How to give the test

- Prior to conducting a classroom observation, obtain a printed copy of the instructor’s notes or lesson plan.
- At the beginning of the class, the fills out a coversheet that contains general information and notes about the class.
- For a large lecture room, randomly choose a spot in the classroom where you are sitting in the row directly behind the students being observed and at an angle so that the students were still within your sight line. For alternative classroom settings, the number of students or observers’ position may have to be adjusted so that all students in the observation group can be adequately see.
- Using the engaged and disengaged behaviors shown under Example Questions, cycle through each of the 10 students in sequence and for each student recorded “E” for engaged, “D” for disengaged, and “U” for uncertain. Uncertain is most often used when the view of the students is obstructed.
- It takes approximately 3 to 10 seconds to gauge the level of engagement of each student, with a 10-student cycle taking approximately one minute to complete. Don't record the specific behavior of each individual; rather, for each 10-student cycle record one observation point (e.g., “8/10 students engaged”) with a time stamped at the start of the cycle.
- Once the class starts, record observation points directly onto the copy of the instructor’s notes in the section corresponding to what is being covered. This ensures that the instructor will later be able to relate engagement with what was happening in their class at any specific time. An observation point is taken for every page of notes, for any major change in activity or content, or at 2-minute intervals depending on which time interval is shorter. Changes in the classroom activity (e.g., clicker question, in-class discussion, demonstration) or instructor behaviors (e.g., moving around the classroom, using humor or real-world examples) are recorded under each observation point.
- Instructor questions to the class and student questions to the instructor should also be documented with the following information: the section of the room in which the question/answer originated and how the interaction is followed up (e.g., entire class, subgroup of students, one student).

How to score the test

- Calculate the average student engagement score for the class including the standard error. You can also calculate the average student engagement score for specific instructional activities.
- Plot the student engagement score over time to get a sense of which classroom activities are more or less engaging.
Student Engaged and Disengaged Behaviors

During your classroom observation, use these engaged and disengaged behaviors and cycle through each of the 10 students you are observing in sequence and for each student recorded “E” for engaged, “D” for disengaged, and “U” for uncertain on the instructor notes or lesson plan provided to you by the instructor. Uncertain is most often used when the view of the students is obstructed.

TABLE 1

<table>
<thead>
<tr>
<th>Description of student in-class behaviors that indicate they are engaged.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaged</td>
</tr>
<tr>
<td>Listening</td>
</tr>
<tr>
<td>Writing</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Engaged computer use</td>
</tr>
<tr>
<td>Engaged student interaction</td>
</tr>
<tr>
<td>Engaged interaction with instructor</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Description of student in-class behaviors that indicate they are disengaged.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disengaged</td>
</tr>
<tr>
<td>Settling in/ packing up</td>
</tr>
<tr>
<td>Unresponsive</td>
</tr>
<tr>
<td>Off-task</td>
</tr>
<tr>
<td>Disengaged computer use</td>
</tr>
<tr>
<td>Disengaged student interaction</td>
</tr>
<tr>
<td>Distracted by another student</td>
</tr>
</tbody>
</table>
BERI Observation Protocol Coversheet

Date of Observation: ________________________________

Course Name, Number and Section: ________________________________

Instructor(s): ________________________________

Observer’s Name: ________________________________

Classroom Number: ________________________________

Estimate of class attendance: ________________________________

Position in Class: (drawing a diagram of the class may be useful)

Notes on classroom environment: (i.e. description of space and seating arrangement, abnormal temperature, use of technology).

Brief description of instructional method: (i.e. traditional lecture mixed with clicker questions).

Notes about group of students being observed: (i.e. 5/10 are using a computer).
Example classroom observation. Numbers indicate the number of students engaged (E), disengaged (D), and uncertain (U). Observations taken at approximately one minute intervals on instructors notes/lesson plan.

START: 12:03 (my phone's time)

GOALS FOR TODAY.

TWO TOPICS.

Abrupt climate changes
- EXPLAIN how we came to realize that climate can change abruptly
- DESCRIBE the occurrence of abrupt climate changes during the last climatic cycle and their possible causes

Climate changes during the last millennium
- DESCRIBE the various archives used to reconstruct climatic changes during the last millennium
- EXPLAIN the various factors that have influenced global climate during that historical period

4/10 a start (12:03pm)

Ice accumulation rates are much faster on Greenland than Antarctica. Consequently, Greenland ice cores provide:
- a (i) longer or (ii) shorter record
- with a (i) higher or (ii) lower resolution

A. (i) (iii)
B. (ii) (iii)
C. (i) (iv)
D. (iii) (iv)

5/10 12:04 before dinner
7/10 12:095 @ dinner
16/10 during dinner timer
8/10 @ results (1st timer)
7/10 during 2nd dinner timer
10/10 @ results (2nd timer)
8/10 explanation 12:09
Could the abrupt warming events recorded in Greenland ice be a result of...?
(i) factor or (ii) changes in thermohaline circulation which could be triggered by...
(iii) lower or (iv) higher salinity of North Atlantic surface water

Prior to rapid warming events → massive iceberg discharge in the North Atlantic

Documented by anomalous accumulation of “ice-raftered-debris”
layers of "ice rafted debris" in North Atlantic sediments prior to the two abrupt warming events of the deglaciation (H1 and H2).
- Icebergs were melting in the North Atlantic at that time.
Why would global warming slow down the rate of the THC?
Because:
A. Higher temperature increases evaporation in the North Atlantic, which would increase surface salinity
B. Higher temperature increases evaporation in the subtropical region, which result is higher precipitation at the polar front and lower salinity in surface water in the North Atlantic
C. Higher temperature decreases the strength of the gulf stream, which decrease heat transport to high latitude
D. Higher temperature decreases the density of surface water, which makes it more difficult of produce deep water

Gradual decrease in seawater salinity in the North Atlantic during the last 40 years....

Due to global warming or part of a natural cycle?

Global warming increases evaporation in the tropics and precipitation in the subpolar regions.

Greaveland ice core record proxy for air temperature

Percent deviation in YD
Age in thousands of years
What could be the cause(s) of these relatively small climatic variations?

Frequency of volcanic eruptions?

What is the effect of volcanic

A. Local warming because of heat released by the volcanoes
B. Global cooling because of volcanic ash in the atmosphere increases albedo
C. Global cooling because of SO2 gas released by volcanoes in atmosphere produce sulfate particles which act as nuclei to increase cloud cover and increase albedo
D. No global effect; just regional cooling
E. No global effect; just regional warming

Residence time ~ 2 years \(\rightarrow\) spread over the globe \(\rightarrow\) Global cooling

Stratosphere

Residence time ~ 2 years \(\rightarrow\) spread over the globe \(\rightarrow\) Global cooling

12:45 8/10
12:46 7/10
Mt Pinatubo
June 1991

Mean temperature decreased by 0.5°C by late 1992

It is clearly recorded as a peak of high sulfate concentration in ice cores ...

Past volcanic activity can be estimated by measuring sulfate concentration in ice cores.

12:47 8/10

+ Student Q: 9/10
Which other factor could have also contributed to temperature changes during the last millennium?

Variations in the intensity of solar radiations?

Changes in solar radiation are related to the number of sunspots appearing periodically on the surface of the sun.

A. With increasing numbers of sunspots, solar radiations:
 (i) increase or (ii) decrease

A. Radiations emitted from the sunspots themselves are:
 (iii) higher or (iv) lower than from the surrounding areas

Shorter term variability: 11-year cycle

→ measured directly since 1976 by satellite
(variability = 1.8 W/m²; 0.1%)

... related to the number of sunspots
Sunspots have recorded since 1610:
- confirmed the 11-year cycle
- number of sunspots and thus intensity of solar radiation has changed during the past 400 years...

Cosmogenic isotopes are isotopes (14C, 10Be)
- Produced in the atmosphere by the interaction between cosmic rays and nitrogen or oxygen atoms
- After formation, 14C is converted to 14CO$_2$ and taken up by trees
- Variation in the 14C concentration in the atmosphere can be estimated by measuring 14C in tree rings

10Be is produced by a similar process and removed from the atmosphere by precipitation
- Past changes in its rate of production can be deduced by measuring 10Be in ice cores
How do cosmogenic isotopes record solar radiation, if they are produced by cosmic rays coming from outer space...?

- solar wind shields the Earth from cosmic rays
- when solar radiation is high
- solar wind increases
- 14C and 10Be production rates decrease

...solar emissions were somewhat lower during the little ice age and higher during the Medieval warm interval