Heisenberg's Uncertainty Principle
The goals of this tutorial are to learn:

· About the Heisenberg’s uncertainty relation (or uncertainty principle) between position and momentum.
· How we can qualitatively understand that the uncertainty principle is due to the wave nature of particles

· discuss relevant features of classical waves, e.g., the “incompatibility” of both well-defined “position” and “wavelength” for a wave on a string
· discuss the relation between the wavelength and the momentum of a particle wave via the deBroglie relation

· combine deBroglie relation for a particle wave and the “incompatibility” of both well-defined position and wavelength for any wave to conceptualize the uncertainty relation between position and momentum of a particle wave

· How the comparison of the familiar diffraction pattern for light wave and the diffraction pattern for the particle wave shed lights on the wave nature of particle and the uncertainty principle.
· How the uncertainty principle between the position and momentum can be understood in terms of

· The width (or standard deviation) of the position space and momentum space wave functions which are related by a Fourier transform

· A narrow distribution of the possible values of position in a given state implying a wide distribution of momentum in that state so that the uncertainty principle is satisfied.
1. Which one of the following inequalities correctly represents the uncertainty principle between position and momentum? 
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2. Explain the physical meaning of 
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 in the previous question (problem 1). (Hint: If you measure the position or momentum in an ensemble of identically prepared systems, will you always get the same result each time for position or momentum?)
3. The standard deviation of position, 
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, is a good measure of the uncertainty 
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 in the measurement of the particle's position (the range of possible values you can measure). Suppose 
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 represents the expectation value of 
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4. Express the uncertainty principle in terms of 
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Qualitatively, the origin of the uncertainty principle is due to the wave nature of particles. Let’s first review some relevant properties of classical waves.
Consider the following situation in which you and your friend are holding the two ends of a very long rope. You shake the rope up and down to produce a periodic wave as shown below:
[image: image21.png]



5. Choose all of the following statements that are correct about the wave.
(1) The position of the wave is located at the discrete points 1m, 2m, 3m, 4m and 5m from the end you are shaking.

(2) The position of the wave cannot be determined precisely.
(3) The wavelength of the wave is approximate 1 m.

(4) The wavelength is not well-defined for this wave.

A. 1 and 3 only      B. 1 and 4 only      C. 2 and 3 only      D. 2 and 4 only
Consider the following situation in which you and your friend are holding the two ends of a very long rope. You give the rope a sudden jerk and produce a pulse traveling to the right. A snapshot is as shown below:
[image: image22.png]



6. Choose all of the following statements that are correct about the wave at the time the snapshot was taken.
(1) The position of the wave is approximately located at 2m from the end you are shaking.

(2) The position of the wave cannot be determined precisely.
(3) The wavelength of the wave is approximate 0.5 m.

(4) The wavelength is not well-defined for this wave.
A. 1 and 3 only      B. 1 and 4 only      C. 2 and 3 only      D. 2 and 4 only

7. Based upon your answers to the previous two questions, can a wave have a well-defined position and wavelength at the same time? Explain.
Let’s now consider the particle waves.
8. Which one of the following equations correctly represents the de Brogile formula that connected the wavelength of a particle wave to the momentum of the particle?
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E. None of the above
9. Choose all of the following statements that are correct for a particle wave: (Hint: In addition to the de Broglie relation, use the fact that when the wavelength is well-defined, the position is not well-defined as discussed earlier, e.g., for the wave on a rope)
(1) When the momentum is well-defined, the position is also well-defined.

(2) When the momentum is well-defined, the position is not well-defined.
(3) When the wavelength of a particle wave is well-defined, its momentum is also well-defined.
A. 1 only    B. 2 only    C. 3 only    D. 1 and 3 only    E. 2 and 3 only
10. In your own words, summarize what you can infer from your response to questions 5 to 9. In particular, explain how a well-defined position for a particle wave affects its momentum, and how a well-defined momentum for a particle wave affects its position.
11. Is your answer to the previous problem (question 10) consistent with the uncertainty principle about position and momentum for a particle wave, i.e., 
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12. Consider the following statement: 
Statement: In general, if we decrease the uncertainty in position of a given particle, the uncertainty in its momentum will increase to ensure that the uncertainty principle is satisfied. 
Explain whether you agree or disagree with this statement. 
Another manifestation of the uncertainty principle comes from using an analogy between single slit diffraction pattern for light wave and particle wave. Let’s first review the properties of the diffraction pattern for light wave.
13. As shown below, the width of the single slit is 
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 and the wavelength of light is 
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 is the angle made by the first minima of the central bright fringe of the diffraction pattern on a far away screen as shown. Which one of the following equations correctly identifies the location of the first minima?
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14. Suppose the distance between the slit and the screen is fixed in a single slit diffraction experiment. If we increase the width of the slit, what changes in the central fringe of the diffraction pattern will be observed on the screen? Explain.
Simulation 1

Now use the simulation “ntnu_multipleslit” to check your answer to the previous question (problem 14). First, use the slide bar on the top left of the window to set N=1 (a single slit). Then use the second left slide bar to change the width of the single slit. How does the width of the central bright fringe change with the width of the single slit? Is the simulation result consistent with your prediction? Explain.
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15. Summarize in your own words how the slit width affects the width of the central diffraction fringe. Could such a behavior be explained if light was behaving as a particle? Explain.
Now let’s consider the diffraction of electrons through narrow slits. 
16. Suppose you send one electron at a time through a narrow slit. What type of pattern will you observe on the screen far from the slit when a large number of electrons have been sent? Is it similar to or different from the pattern for single slit diffraction of light? Does the pattern you observe for electron show wave or particle nature? Explain.
17. In the previous problem (question 16), if you decrease the width 
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 of the slit, what changes to the central fringe of the election diffraction pattern do you expect to observe on the screen? Explain how it might be related to the uncertainty principle between position and momentum.
18. Consider the following conversation between Andy and Caroline.
Caroline: I don’t see how the effect of the narrowing of the slit width on the central fringe of the diffraction pattern illustrates anything about the uncertainty principle. How will the width of a narrow slit 
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 affect the momentum of the electrons passing through the slit?
Andy: Look at the figure below. Suppose an electron has a momentum only in the z-direction before entering the narrow slit. After the electron passes through the slit, it will have a momentum in both the x-direction and z-direction because electrons behave as a wave. Otherwise, if the electrons only have a momentum in the z-direction after passing through the slit, they will not spread out and form a central bright fringe much wider than the size of the slit. The width of the central bright fringe on the screen indicates the spread in the x-component of momentum 
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Caroline: In the simulation for light, we observed that the central bright fringe on the screen is wider when the slit is narrower. Does this observation imply that the x-component of momentum spread 
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 is larger when the position spread 
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Andy: Yes, you are right. The relation 
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 tells us that when 
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 is smaller, the angle 
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 is larger. So the central bright fringe is wider or the momentum spread 
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Do you agree or disagree with Andy? Explain.
Now that you have qualitatively understood how the uncertainty principle is due to the wave nature of particles, let’s consider how it can be understood quantitatively using the position space wavefunction and momentum space wavefunction. 
19. When a position space wavefunction of a system is given, we can use Fourier transformation to find the momentum space wavefunction of that system. If 
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 is the magnitude wave vector. (Note that the integration variable is x in some cases and k in other cases.)
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(Note: Some textbook may define the Fourier transform as 
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. These different definitions only have a difference in how a constant 
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 . In our tutorial, we will use the definition in question 19 answer (B).)
20. [image: image1.wmf]h

Which one of the following normalized wave functions 
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 has the larger spread (uncertainty) in position? Explain.
21. Which one of the following normalized wave functions 
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 has the larger spread (uncertainty) in momentum? Explain. 
Simulation 2

Use the simulation “free_particle_wavepacket” to check your answer to question 21. Drag the slide bar at the top the window “position space” to change the width of the wave packet in position space. Observe how the momentum space wavefunction changes when you increase or decrease the width of the position space wavefunction. Is the result in this simulation consistent with your prediction in question 21? Explain. 
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22. If the uncertainty in position of a particle is decreased and the shape of the wavefunction is the same (e.g., the new and old wavefunctions are both Gaussian functions), can you conclude that the uncertainty in momentum must increase? Explain.
23. When the position space wavefunction 
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 of a particle is explicitly given, which one of the following statements is correct about the momentum space wavefunction 
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(1) We know nothing about 
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 unless we measure the momentum of the particle.
(2) We can find the standard deviation of 
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. However, the shape of 
[image: image72.wmf])

(

p

j

 will still be unknown.
(3) We can find the maximum and minimum values of 
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. However, the standard deviation of 
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 will still be unknown.
A. 1 only

B. 2 only

C. 3 only

D. 2 and 3 only

E. None of the above

24. The Gaussian “wave packet” can be used to describe the wavefunction of a free particle at a given time. Which one of the following is a normalized Gaussian wave packet? (Hint: you need to simply pay attention to the equations. No need to do calculation.)
A. 
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Simulation 3

Use the simulation “math_fourier_analysis” to check the shape of each of the functions in the previous problem (question 24). For convenience, let 
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. The functions for choices A, B, C and D in question 24 should be entered as “e^(-1.57*x)”, “e^(-1.57*x*x)”, “e^(1.57*x*x)” and “e^(-1.57*abs(x))” . Sketch the correct Gaussian wavefunction below and approximately mark the standard deviation 
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 on the graph. You don’t need to press the “play/pause” button since the functions are time-independent.
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25. For the position space wavefunction 
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, the momentum space wavefunction obtained by the Fourier transform is 
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Yes.
26. If the position space wavefunction 
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 is not a Gaussian but an arbitrary function, will the Fourier transformation result 
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No. Gaussian function is special since it has the format exp(-x^2).
27. For 
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, choose all of the following statements that are correct. (Hint: The standard form of a Gaussian function peaked about 
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(3) The product of the standard deviations (uncertainties) of 
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A. 1 only

B. 2 only

C. 3 only

D. 1 and 3 only

E. 2 and 3 only

For statement (3), check question 25.
Simulation 4

Use the same simulation “math_fourier_analysis” as in Simulation 3 to check your answer to the previous problem (question 27). First, set 
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 by entering the function as e^(-1.57*x^2). Observe the shape of the wavefunction in both the “Spatial Function” (the position space) and “Fourier Transformation” (the momentum space) windows. Then keep
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 by inputting the function as 1.19*e^(-3.14*x^2). Observe the shape of wavefunction in both “Spatial Function” and “Fourier Transformation” windows and compare them with the previous situation (
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). Is the result in this simulation consistent with your prediction in question 27? Explain.
28. Suppose 
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(in arbitrary units). Sketch the Fourier transform of 
[image: image118.wmf])

(

1

x

y

 and 
[image: image119.wmf])

(

2

x

y

. Is there any difference between the Fourier transform of 
[image: image120.wmf])

(

1

x

y

 and 
[image: image121.wmf])

(

2

x

y

? Explain.

The Fourier transform of  
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29. In the previous problem (question 28), are the following physical quantities related to 
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(1) the uncertainty in position 
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Same.
(2) the uncertainty in momentum 
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Same.
Simulation 5
Use the same simulation “math_fourier_analysis” as in Simulation 3 to check your answer to the previous questions (questions 28 & 29). First, set 
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 by inputting the function as e^(-1.57*x^2). Observe the shape of the wavefunction in both the “Spatial Function” and “Fourier Transformation” windows. Then keep
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 the same but change the parameter 
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 by inputting the function as e^(-1.57*(x-1)^2). Observe the shape of wavefunction in both the “Spatial Function” and “Fourier Transformation” windows and compare them with the situation of 
[image: image133.wmf]0

0

=

x

. Is the result in this simulation consistent with your prediction in question 29? Explain.

30. A wavefunction highly localized in position space can be approximated as a Dirac delta function 
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31. Consider the following conversation between Andy and Caroline:
Andy: Assume that a particle’s wavefunction is so localized in position that we can consider it as a delta function
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. The Fourier transformation tells us that the distribution of wave vector 
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 for a particle wave, if the wave function is localized in position, the momentum will have a large spread or large uncertainty. This example illustrates the position-momentum uncertainty relation.
Caroline: I disagree. The Fourier transform of 
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 which is a fixed constant value. A fixed constant value cannot imply a large spread of k values. So the Fourier transform of a delta function cannot be used to illustrate the uncertainty principle.
Do you agree with Andy or Caroline or neither of them? Explain. Sketch the plots showing 
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32. Earlier you found that the Fourier transform of a delta function 
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. Which one of the following is the “integral form” of the delta function 
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33. Now consider the situation for which the wave function in the position space is very spread out and has an equal weight for all possible positions: 
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. Which one of the following is the momentum space wave function 
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D. None of the above
34. Explain how your response to the previous problem (question 33) is consistent with the uncertainty relation between position and momentum.
The uncertainty in position of 
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 is infinite since 
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 is a constant which spread across all space. The corresponding uncertainty in momentum is zero since the momentum space wavefunction is a delta function. The multiplication of infinite and zero can still satisfy the uncertainty principle.
35. Write down the mathematical representation of two Gaussian wavefunctions 
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 in momentum space such that the wavefunction 
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 have a larger expectation value of momentum but a smaller uncertainty in momentum. Qualitatively sketch 
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 and 
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 as a function of momentum 
[image: image171.wmf]k

p

h

=

.
36. The normalized step wavefunction 
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 for a particle A is shown below. Sketch a normalized step wavefunction 
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 for particle B that satisfies both these conditions:
(I) the expectation value of position of B is larger than A 
(II) the uncertainty in the momentum of B is larger than A
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37. Consider a normalized step wavefunction and a Gaussian wavefunction in position space that have the same 
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 of the two wavefunction necessarily be the same? Explain.
Not necessary. Because different type of functions have different result of Fourier transform.
38. Assume the 
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 for a step wavefunction is larger than the 
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 for a Gaussian wavefunction and 
[image: image179.wmf]gauss

x

step

x

,

,

s

s

>

. Explain how this observation is still consistent with the uncertainty principle. 
The uncertainty principle is an inequality. For different type of function, the value of 
[image: image180.wmf]p

x

D

D

 can be different. Therefore, 
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(Note: The uncertainty principle 
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 is an inequality. There is no limitation of how large the product of the uncertainty in position and momentum can be. When 
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 can be either large or small depending on the wavefunction as long as 
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. However, when 
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 is small, 
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 need to be at least large enough to satisfy the uncertainty principle. If two functions with different shapes, e.g, a step barrier function and a Gaussian function, have the same 
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, their uncertainty in momentum 
[image: image191.wmf]p

D

 may be different.)

39. Suppose you know the position space wavefunction 
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 for a quantum system at time t=0. Is this information enough for you to find the uncertainty in both position and momentum at time t=0? Explain.
Yes. 
40. Consider the following statement: 
Knowing 
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 at t=0 is enough to find the uncertainty in both position and momentum at time t=0 but we must know the Hamiltonian of the system to find the uncertainty in position and momentum at future times.
Explain whether you agree or disagree with this statement.
Agree. Remember that 
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. Without knowing Hamiltonian, we cannot find the wavefunction 
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 at time t>0. 
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