Name

[dentical Particles

1 Notes for this tutorial:

e We will only consider systems of non-interacting identical particles.

e The word “identical” in this tutorial will refer to one type of particle (all particles with the same prop-
erties). For example, all electrons are identical.

e Assume that all systems with more than one particle consist of identical particles. For example, a system
of fermions is made up of identical fermions (e.g., electrons) and a system of bosons is made up of identical
bosons (e.g., Helium-4 atoms).

e Identical particles (particles of one type with the same properties) are in general indistinguishable (e.g.,
you cannot distinguish which particle is in which single particle stationary state). Exchanging these
indistinguishable particles with each other does not produce a distinctly different many-particle state.

e Assume that particles are restricted to one spatial dimension (spatial coordinate given by x) for conve-
nience.

e We will use the notation H; to denote the Hamiltonian in the M-dimensional Hilbert space for the "
particle.  We will use the boldface notation H; to denote the Hamiltonian of the i*" particle in the
MPN-dimensional Hilbert space for the N-particle system.

e Unless otherwise stated, the single-particle wavefunction, v, (x), in this tutorial refers to the normalized
single-particle stationary state wavefunction.

e The N-particle wavefunction, (x1, 2, - ,ZN) = Vny ng,- my (1,22, ,ZN), in this tutorial refers to
the many-particle stationary state wavefunction with coordinates x1, xo, ..., x N for different particles.

e The wavefunction of a system of two non-interacting identical particles has terms such as ¥, (z1)¥n, (22),
where 1y, (x1) and ¥, (z2) are the single-particle wavefunctions for particles in states n; and ng and
coordinates x1 and xo, respectively.

— Remark: 1y, (x1) and 1, (x2) should be regarded as any single-particle wavefunctions for particles
1 and 2, respectively (i.e., in general, 1,,, does not refer to the ground state and 1), does not refer
to the first-excited state wavefunction).

e Here, for convenience, we will refer to all direct products of single-particle states as “basis states”. Please
note that for identical fermions, only completely antisymmetric linear combinations of these basis states
are allowed, while for bosons only completely symmetric linear combinations are allowed. For distinguish-
able particles, all basis states are allowed.

e The energy of the system of N non-interacting identical particles is given by £ = E,,, + Ey, +- -+ Epy =
N

Z E,,, in which E,, is the energy corresponding to the single-particle state ,,,.
i=1

e Unless otherwise specified, there is no degeneracy in the energy spectrum of the single-particle states.
That is E,, # Ey; for n; # nj, in which E,, is the energy corresponding to the single-particle state with
wavefunction v, and E,; is the energy corresponding to the single-particle state ;.

e Unless otherwise specified, assume that the particles are spinless for the purposes of constructing the
many-particle wavefunction and ignore the spin part of the wavefunction.




N
e The product notation, e.g, H$i, will be used to represent the product of x; for i = 1,2,..., N (i.e.

N

=1

Haci = X1X2x3 " -x]v).

=1

2 Objectives

Upon completion of this tutorial, you should be able to do the following:

1. Determine the form of the Hamiltonian for non-interacting identical particles.

2. Determine the basis states in the product space for a system of non-interacting identical particles

3. Determine the form of the wavefunction for a system of non-interacting identical particles if the particles

are indistinguishable fermions, indistinguishable bosons, or a hypothetical case in which identical particles
can be treated as distinguishable.

4. Construct the wavefunction for the ground state and first-excited state for a specific two-particle system
for two non-interacting identical particles (particles of one type with the same properties) if the particles

are:

(a) Indistinguishable bosons

(b) Indistinguishable fermions

(c) Hypothetical case: Identical particles which can be treated as distinguishable

5. Determining the Number of Distinct Many-Particle States

(a) CASE 1: The total energy of the many-particle system is not fixed, but a fixed number of single-
particle states are available to the system:

i.

ii.

Calculate the number of distinct many-particle states if you have two particles, three particles,
or N particles (N > 1) in the following cases:

A. Particles are indistinguishable bosons
B. Particles are indistinguishable fermions
C. Hypothetical case: Identical particles which can be treated as distinguishable

Compare the results for the cases of indistinguishable bosons and indistinguishable fermions to
the results for the hypothetical case when identical particles can be treated as distinguishable.

(b) CASE II: The total energy of the many-particle system is fixed:

i.

ii.

iii.

Calculate the number of distinct many-particle states if you have two particles or three particles
in the following cases:

A. Particles are indistinguishable bosons
B. Particles are indistinguishable fermions
C. Hypothetical case: Identical particles which can be treated as distinguishable

Compare the results for the cases of indistinguishable bosons and indistinguishable fermions to
the results for the hypothetical case when identical particles can be treated as distinguishable.
For a system of two non-interacting identical particles, determine the probability of obtaining
a particular value of the energy of a particle when the single-particle energy is measured at
random and the total energy is fixed for a specified many-particle system if the particles are:
A. Indistinguishable bosons

B. Indistinguishable fermions



C. Hypothetical case: Identical particles which can be treated as distinguishable
iv. Compare the results for the cases of indistinguishable bosons and indistinguishable fermions to
the results for the hypothetical case when identical particles can be treated as distinguishable.

(¢c) CASE III: The single-particle states have degeneracy and the total energy of the many-particle

system is fixed by fixing the number of particles in each group of degenerate single-particle states
with a given energy.

i. Calculate the number of distinct many-particle states in the following cases:
A. Particles are indistinguishable bosons
B. Particles are indistinguishable fermions
C. Hypothetical case: Identical particles which can be treated as distinguishable.

6. Determine the wavefunction including spin for a system of non-interacting identical particles if the particles
are indistinguishable fermions or bosons.

7. Construct the wavefunction for the ground state and first-excited state for specific many-particle system
for many non-interacting identical particles if the particles are:

(a) Indistinguishable bosons

(b) Indistinguishable fermions.

8. Determine the form of the wavefunction for a system of non-interacting identical particles in the limiting
case when identical particles can be treated as distinguishable.



3 Basics for a System of NV Non-Interacting Particles

3.1 Hamiltonian for a System of Non-interacting Particles

e Before we determine the form of the stationary state wavefunction for a system of N non-interacting
identical particles, let’s determine the form of the Hamiltonian for a system of non-interacting particles
in terms of the single-particle Hamiltonian.

e We will use the notation H; to denote the Hamiltonian in the M-dimensional Hilbert space for the "
particle.  We will use the boldface notation H; to denote the Hamiltonian of the i*" particle in the
MPN-dimensional Hilbert space for the many-particle system.

e The following question and conversations will guide you as you think about the Hamiltonian for a system
of N non-interacting identical particles in which each particle is in a M-dimensional space.

1. Write the Hamiltonian H for a system of N non-interacting, identical particles in the product space in

terms of the Hamiltonians for the individual particles H; (1=1,2,...,N)..



Consider the following conversation regarding constructing the Hamiltonian for a system of NV
non-interacting identical particles in which each particle is in a M-dimensional space.

Student 1: The Hamiltonian for the non-interacting N- partlcle system in the M -dimensional product
spacemH HoH,9oH;® - @Hy, inwhihH; =L L® - ®,_1 @ H; ®L+1 - ® Iy is the
Hamiltonian of the i*" particle in the M N_dimensional space. The single-particle Hamiltonian, I:IZ', and
the identity operator, I;, are for the ¢! h particle in the M-dimensional space.

Student 2: I disagree with Student 1. The Hamiltonian H for non-interacting particles in the M-
dimensional product space is H=H 1® H2 & H3 ®---QH N-

Student 3: I disagree with Student 1 and Student 2. If we know the single-particle Hamiltonian H; for
the " particle in the system in the M-dimensional space, then the Hamiltonian for a system of N non-
interacting identical particles in the M~ -dimensional product space has the form H = Hy+Hy+ - +Hx.
Student 4: I disagree with Student 1, Student 2, and Student 3. Since the Hamiltonian for the system
must be in the M -dimensional product space, H = H, —|—H2 +-- +H N- The Slngle partlcle Hamiltonian
for the it" particle in the MY -dimensional product space is H = Il ® Ig ® - I 1® H ® Iz+1 QR IN,
where the boldface notation Hj is for the M -dimensional product space. The sum of the M-dimensional
single-particle Hamiltonians H 1 +H i H n is only M-dimensional and is not in the M N_dimensional
product space.

Explain why you agree or disagree with each student.

Consider the following conversation regarding constructing the Hamiltonian for a system of NV
non-interacting identical particles in which each particle is in a M-dimensional space.

Student 1: If we know the single-particle Hamiltonian H; for the i'" particle in the system in the M-

dimensional space, then the Hamiltonian for a system of N non- 1nteract1ng identical partlcles has the

form H = (H1®IQ®13® ®IN) (Lh@H,®3® - ®Iy)+ (11®Ig® ®IN_s®Hy1 ®

IN) + (11 QLY RIN_1® HN) with the single-particle Hamiltonian, H;, and the identity operator,

I;, for the 4" particle in the M-dimensional space.

Student 2: I agree with Student 1. Since the particles are non-interacting, the Hamiltonian H; for the
h particle is not entangled with the Hamiltonian flj for the j* particle. A short hand notation for the

N

sumisI:I:ZI:Ii:I:I1+I:IQ+I:I;>,+~-'+I:IN.
=1

Explain why you agree or disagree with each student.



** CHECKPOINT: Check your answer to question 1. **

N
Zﬂ =M +Hy+ Hs + -+ Hy

If your answer does not match the checkpoint, go back and reconcile any difference you may have with
the checkpoint answer.

Consider the following conversation regarding two non-interacting identical particles in a one-dimensional
infinite square well.

Student 1: In an infinite square well, we are only permitted to have one-particle in the well. If the
system has two non-interacting identical particles, we MUST have two infinite square wells in order to
place each particle.

Student 2: I disagree. We can have two non-interacting identical particles in the same infinite square
well. If the particles are non-interacting and confined to a well of width a, the Hamiltonian for each

~ n2
particle in the product space will be H; = 2197% + V(z;), in which

i < x; <
V(wz)z{o o Osmsa (i=1,2).

oo otherwise

The Hamiltonian for the system of two non—mteractmg identical particles in the same well in the product
space is H= H1 + H2 = H1 ® .[2 + Il ® Hg, where H1 and HQ are the single-particle Hamiltonians in
the product space and H; and H; are the single-particle Hamiltonians in the subspaces for the individual
particles.

Explain why you agree or disagree with each student.

Summary of the Hamiltonian for a System of NV Non-interacting Particles.
e The Hamiltonian H for a system of N non-interacting particles in the product space is the sum of
N

the Hamiltonians for each particle in the product space, H= Z I:IZ = I:Il + I:IQ + I:Ig + -+ ﬂN
i=1

with ;=L L@ L1 9H, @i ®- @ In.



3.2 Determining Whether the Basis States in the Product Space for a System of N Non-Interacting
Identical Particles Should be Written in Terms of the Sum or Product of the Single-Particle Stationary
State Wavefunctions

e Now that we know the form of the Hamiltonian H for a system of N non-interacting identical
particles in terms of the single-particle Hamiltonian H; in the product space, let’s think about the
form of the stationary state wavefunction for this system.

e The form of the stationary state wavefunction for a system of non-interacting identical particles will
depend on the type of particle. We will consider three cases:

— Indistinguishable fermions
— Indistinguishable bosons
— Hypothetical case: Identical particles which can be treated as distinguishable.

e Here, for convenience, we will refer to all direct products of single-particle states as “basis states”.
Please note that for identical fermions, only completely antisymmetric linear combinations of these
basis states are allowed, while for bosons only completely symmetric linear combinations are allowed.
For distinguishable particles, all basis states are allowed.

— Let’s consider the appropriate basis states, e.g., whether the wavefunction for a system of N
non-interacting identical particles can be written in terms of the sum or the product of the
single-particle wavefunctions of individual particles.

2. Explain why you agree or disagree with the following student. If you disagree, write a correct statement.

Student 1: The wavefunction 1, (z1) describes a particle in a single-particle state denoted by quantum
number n; specifying a single-particle energy and coordinate z;.

3. Write the right-hand side without operators, if possible, in the following questions for a system of two
non-interacting identical particles, whose single-particle wavefunctions satisfy the Time Independent
Schrodinger Equation (TISE), ﬁi¢nj (w;) = Ey,tn,(z;) for the ith particle with coordinate z; in the
single-particle state given by n;. Assume n; # ng. If it is not possible to write the right-hand side
without operators and without encountering difficulties or inconsistencies, explain why.

(c) (A, )
( I’_\Il[wrn (1'1 ¢n2($2)] =
e I:IQWJm (331 an(xQ)] =

(h) (Hy+Ho)[thn, (21)%n, (22) — Uy (21)n, (22)] =




4. Circle all of the following wavefunctions “U” (taken from question 3) that are “possible” two-particle
stationary state wavefunctions. Ignore normalization. (Hint: The wavefunction ¥ should satisfy HU =
EV in which H = I:h + I:IQ is the Hamiltonian in the product space and F = E; + Fs is the energy,
respectively, of the two-particle system.)

(@) W(z1,22) = ¥n,y (T1) + Py (72)

(b) W(z1,72) = tn, (21)¢n, (22)

(¢) W(z1,72) = thn, (21)¥n, (T2) + Yy (¥1) Y0, (72)
(d) W(z1,22) = tn, (21)¥n,(T2) — Yy (¥1) Y0, (72)

Consider the following conversation regarding whether the basis states for constructing the two-particle
stationary state wavefunction for a system of two non-interacting identical particles can be written in
terms of the sum of the single-particle wavefunctions.

Student 1: The basis states that can be used to construct a two-particle stationary state wavefunction
for a system of two non-interacting identical particles can be written in terms of the sum of the single-
particle wavefunctions, ¥(x1, z2) = ¥, (1) + ¥n, (z2).

Student 2: I disagree. The sum of the single-particle states ¢y, (z1)+n, (z2) is not in the Hilbert space of
the two-particle system. When the two-particle Hamiltonian H; +Hj acts on the state Uy (1) +Un, (2),
there are inconsistencies. Consider terms of the type Htp, (x2) when Hy 4+ Hy acts on ¥y, (1) +Un, (22).
Student 1: Isn’t Hyt, (22) = 07

Student 2: No. The single-particle Hamiltonian H, only acts on the wavefunction corresponding to
particle one. The wavefunction ¢, (z2) can be written as 1 - 1, (z2). The wavefunction corresponding
to particle one is “1”, which is not normalizable.

Student 3: I agree with Student 2. The sum of the single-particle states ¥, (z1) + ¥n, (22) cannot be a
basis state for a two-particle system.

Explain why you agree or disagree with the students.



Consider the following conversation regarding whether the basis states for constructing the many-particle
stationary state wavefunction for a system of two non-interacting identical particles can be written in
terms of the product of the single-particle wavefunctions.

Student 1: The basis states used to construct a two-particle stationary state wavefunction for a system
of two non-interacting identical particles can be written in terms of the product of the single-particle
wavefunctions, such as ¥, (1)¥n, (x2).

Student 2: I agree with Student 1. Also, if we consider terms of the type ¢n, (21)¢n,(x2) in the wave-
function for a system of two non-interacting identical particles, then it satisfies the TISE, as follows:

Hy, (21) U0, (22) = (IEI1 + 1:12)¢n1($1)1/1n2 (z2)

(H1 @ Io)n, (€1)¢n, (22) + (11 @ H2)n, (21)¢n, (22)
Hyon, (21)][Lathny (22)] + [1190n, (21)][Hathn, (22)]

[(H1 o, (21)]thn, (22) + Vn, (22) [Hatbn, (21)]

Enlwm (xl)wng (1‘2) + Tbm (wl)Enzwm (332)

Em ?/)m (x1)¢n2 (xQ) + ETL2 wru (xl)d}nQ (1‘2)

(Em + En2)wn1 (1'1)1/1712 (x2)

= E¢n1 (fEl)d]ng (-772)’

in which /' = E,,, + Ep,.

Explain why you agree or disagree with each student.

Consider the following conversation regarding whether the basis states consisting of the product of the
single-particle stationary state wavefunctions span the product space of the many-particle system.
Student 1: The products of the single-particle stationary state wavefunctions are solutions to the TISE
and therefore, they must be basis states for the system of N non-interacting identical particles.
Student 2: T agree. A complete set of energy eigenstates ¢, (21)¢n,(x2) will span the product space
and will form a suitable basis.

Student 3: I agree with both Student 1 and Student 2. Since the products of the single-particle sta-
tionary state wavefunctions form a complete set of energy eigenstates for the many-particle system, they
must span the product space for the many-particle system.

Explain why you agree or disagree with each student.

Summarize in your own words whether the sums or products of the single-particle wavefunctions can form
a suitable basis for N non-interacting identical particles in the product space.



e The following conversation and questions will help you learn about the notation for the stationary
state wavefunction for a system of N non-interacting identical particles

Consider the following conversation regarding whether the single-particle wavefunctions in the basis states
should have the same or different coordinates to properly specify a three-particle wavefunction for a sys-
tem of three non-interacting identical particles.

Student 1: We must assign a different coordinate to each identical particle. The wavefunction will have
basis states such as ¥, (1), (T2)n, (3).

Student 2: No. I disagree with Student 1. When the particles are indistinguishable, we can’t possibly dis-
tinguish their individual coordinates. So the wavefunction will have basis states such as ¥, ()9, (2)1n, ().

Explain why you agree or disagree with each student.

. After each statement, explain why you agree or disagree with the following students. If you disagree,
write a correct statement.

(a) Student 1: ¥, ()Yy,(x) is a basis state that can be used to construct the two-particle stationary
state wavefunction for a system of two non-interacting particles. Particle 1 is in a single-particle
state denoted by n; and particle 2 is in a single-particle state denoted by no.

(b) Student 2: 1, (z2)Yn,(x1) is a basis state that can be used to construct the two-particle stationary
state wavefunction for a system of two non-interacting particles. Particle 1 with coordinate x5 is in
a single-particle state denoted by n; and particle 2 with coordinate x7 is in a single-particle state
denoted by no.

(c) Student 3: 1y, (x2)1Yn, (z1) is a basis state that can be used to construct the two-particle stationary
state wavefunction for a system of two non-interacting particles. Particle 1 with coordinate x; is in
a single-particle state denoted by n; and particle 2 with coordinate xo is in a single-particle state
denoted by no.

(d) Student 4: vy, (z1)Yn, (x2)1n, (z3) is a basis state that can be used to construct the three-particle
stationary state wavefunction for a system of three non-interacting particles. Particle 1 with coordi-
nate 1 is in a single-particle state denoted by ni, particle 2 with coordinate x9 is in a single-particle
state denoted by ng, and particle 3 with coordinate z3 is in a single-particle state denoted by ns.
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6. In your own words, describe what the symbols z1, z9, and z3 in the basis state 1, (z1)¥n, (z2)n, (x3)
mean to you. (Labels representing the single-particle states are n1, no and nq, respectively, with two of
the labels being the same.)

Consider the following conversation regarding whether a different ordering of the single-particle wavefunc-
tions in the basis states yields a different basis state for a system of non-interacting identical particles.
Student 1: For a system of two non-interacting identical particles, the terms ), (z1)¥n,(z2) and
Uny (22)Un, (x1) represent two different basis states.

Student 2: No. I disagree with Student 1. When writing the basis states, different orderings of the
single-particle wavefunctions does not produce a different basis state. Both terms v, (1)1, (z2) and
U, (22)1n, (1) represent the same basis state in which particle 1 with coordinate x; is in a single-particle
state denoted by n;, and particle 2 with coordinate x3 is in a single-particle state denoted by ns.

Explain why you agree or disagree with each student.
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** CHECKPOINT: Check your answers to questions 2-6. **

2. Student 1 is correct.

3a. There is an inconsistency in the term Hj[i),, (z2)]. The single-particle Hamiltonian H; can only
act on the wavefunction in the part of the Hilbert space corresponding to particle 1 but this term has
a wavefunction “1” corresponding to particle 1 which is not possible (in other words, H, acts on “17
for the wavefunction which is not a possible wavefunction since it is not normalizable)

3b. There is an inconsistency in the term Ha (i), (21)]. The single-particle Hamiltonian Hy can only
act on the wavefunction in the part of the Hilbert space corresponding to particle 2 but this term has
a wavefunction “1” corresponding to particle 2 which is not possible (in other words, Hj acts on “17
f9r the wavefunction which is not a possible WavefAunction since it is not normalizable) R
H2W}n1 (xl) + ¢n2(x2)] is undefined as the term Hav,, (xl) = (Il ® H2)¢nl (xl) = [Iﬂbnl ($1)HH21]
and 1 is not a normalizable wavefunction for particle 2.

3c. (!:11 + Ho)[thn, (1) + ¥, (x2)] is undefined by reasoning as in 3a and 3b.

3d. Hy [Vn, (21)¥ny (22)] = En, [thn, (21) Y0, (22)]

3e. Ha[tn, (21)¢ny (22)] = En, [Pn, (21)hn, (22)]

3f.
Hipr,, (1), (22) = (1511 + ﬁ2)¢n1($1)1/1n2 (z2)
(H1 @ Io)Yn, (21)Pn, (22) + (11 @ Hz)thn, (21)¢n, (2)
{Iﬂl}m ($1)121/1n2 (xQ) + Ilwnl (Axl)HﬂZ)nz ('TQ)
f{ﬂl}m ($1)¢n2 ($2) + ¢n1 ($1)H2A¢n2 (xQ)
[H1thn, (21) ¢, (22) + Yny (1) [Hathn, (22)]
By ¥, (21)¥ng (22) + ¥n, (21) Eng ¥, (22)
= En¢n, (-731)1/}112 (xQ) + Enythn, (951)1/1712 (332)
(Enl + E”Q)wnl ('xl)wnz (.%'2)
= Eyp, ('/’Ul)/l/]nQ (‘r?)

3g.

(Hy + Ho) [Yn, (21)¥ns (22) + ¥ng (21)¥n, (22)] = Eny ¥, (21)¥ng (22) + Engthn, (1), (22)
By Py (1), (02) + By thny (21) Y0, (22)
= (Em + EnQ)W)nl (x1)¢n2 (xQ) + ¢n2 (xl)d)nl (xQ)]
- E[wm (x1)¢n2(x2) +¢n2(x1)¢n1 ('T?)]

3h.

(Hy + Ho)[Un, (21)1n, (22) — ¥y (#1)n, (22)] = Enytn, (21)¥ny (22) = Enytony (#1)n, (22)
+Eﬂ2¢n1 ($1)¢n2 (1’2) - Enl ¢n2 (l'l)wrn (132)
= (Em + En2>[wn1 (xl)wm (1'2) — Un, (xl)wm (x2>]
= E["bm ($1)71Z)n2 (xQ) — n, (x1)¢n1 (562)]

4. b, ¢, and d. The wavefunctions in the preceding question 3f, 3g, and 3h, which are products of
the single-particle wavefunctions, all satisfy the TISE for H;, + H, and are possible many-particle
stationary state wavefunctions.

Sa. Student 1 is incorrect. The coordinates for each particle must be unique in the basis states (e.g.,
particle 1 has coordinate z1 and particle 2 has coordinate x3).

5b. Student 2 is incorrect. W(x1,z2) = 1, (x2)Yn, (1) is a basis state that can be used to construct
the two-particle stationary state wavefunction for a system of two non-interacting particles. Particle
1 with coordinate x; is in a single-particle state denoted by ns and particle 2 with coordinate x is
in a single-particle state denoted by n;.

5c. Student 3 is correct.

5d. Student 4 is correct.
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6. For the system of three non-interacting particles, particle 1 with coordinate x is in a single-particle
state denoted by mp, particle 2 with coordinate s is in a single-particle state denoted by ns, and
particle 3 with coordinate x3 is in a single-particle state denoted by n;.

If your answers do not match the checkpoint, go back and reconcile any differences you may have with
the checkpoint answers.
Summary of the Basis States for a System of N Non-Interacting Particles.

e The basis states used to construct the many-particle stationary state wavefunction for a system of N
non-interacting identical particles are written in terms of products of the single-particle wavefunctions
(NOT the sum of the single-particle wavefunctions) with different coordinates z; for each particle.
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3.3 Stationary State Wavefunction for a System of IV Identical Particles which are Indistinguishable

e Now that we know that the products of the single-particles wavefunctions form appropriate basis
states for the product space, let’s focus on how to use these basis states to construct the many-particle
stationary state wavefunction (i.e., the form of the many-particle stationary state wavefunction for
identical particles which reflects indistinguishability).

e A system of identical particles which are indistinguishable can consist of either a system of identical
fermions or identical bosons.

[ Identical Particles }

Indistinguishable Fermions Indistinguishable Bosons

Consider the following conversation regarding identical particles which are indistinguisble.

Student 1: If we have two identical fermions, we can paint one fermion red and the other fermion green.
Then, all we need to do is to keep track of the color to keep track of each fermion.

Student 2: In general, in quantum mechanics, if two particles in a system are identical fermions, we
couldn’t paint one red and the other green. Quantum particles are truly indistinguishable. There is no
measurement we can perform that could distinguish one identical fermion from the other. For example,
there is no measurement that can distinguish which fermion was in which single-particle state and had
which coordinate. The wavefunction must reflect the fact that we cannot attach identifiers to each iden-
tical fermion.

Student 3: Yes. Similarly, if both particles are identical bosons, we couldn’t paint one red and the other
green either. In general, when the single-particle wavefunctions for the two identical bosons overlap, there
is no measurement we can perform that could distinguish one boson from the other, for example, which
boson had which coordinate and was in which single-particle state.

Explain why you agree or disagree with each student.

Consider the following conversation regarding the spin of identical particles regardless of whether the
particles are fundamental particles (indivisible or composite).

Student 1: When we have a system of identical particles, all particles have the same intrinsic properties
such as mass, charge, and spin.

Student 2: I agree. Also, the property of spin differentiates a boson from a fermion. The spin of a boson
must be an integer. For example, Helium-4 is a boson since it has integer spin. The spin of a fermion
must be a half-integer. For example, an electron, proton, and neutron are fermions with spin 1/2.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding whether the coordinates of each particle should be the same
or different in the wavefunction for a system of non-interacting identical particles which are indistinguish-
able.

Student 1: For a system of three identical particles, the wavefunction will have terms such as

Uy ()W, () 1ng () in which ¥y, (), 1n, (x), and ¢,,(z) are the single-particle wavefunctions with the
same coordinate for all three particles since the particles are indistinguishable.

Student 2: I disagree. Even though the particles are indistinguishable, we must still assign a different co-
ordinate to each particle in a given state. The wavefunction will have terms such as ¥, (z1)Vn, (€2)¥n, (23).
Student 3: No. I agree with Student 1 and disagree with Student 2. When the particles are indistin-
guishable, we can’t possibly distinguish their individual coordinates. So the wavefunction will have terms

such as Y, (2)¥n, (2)¢n, ().

Explain why you agree or disagree with each student.

Student 2 is correct in the preceding conversation.

e The coordinates do not account for the indistinguishability of the particles, rather the indistin-
guishability is reflected in the way the many-particle wavefunction is written (either as a completely
symmetric or antisymmetric wavefunction).

e The wavefunction for indistinguishable fermions has different properties than the wavefunction for
indistinguishable bosons.

e Before considering the wavefunction for indistinguishable fermions or indistinguishable bosons, let’s
review how to determine whether a many-particle wavefunction is completely symmetric versus
antisymmetric with respect to the exchange of any two particles.

Symmetric Wavefunction: A symmetric wavefunction of two-particles U (z1, z2) produces the same
wavefunction (with the same sign) when the two particles are exchanged. Therefore,

\I’(l'z,l'l) = \I’(l'l,l'g).

A completely symmetric wavefunction for N particles ¥(x1,z2,23...,2,...,2j,...,2N) produces the
same wavefunction (with the same sign) when any two particles labeled by x; and x; are exchanged:

\I/($1,$2,:L’3...,$j,...,xi,...,xN) :\I/(xl,$2,$3...,l’i,...,J,’j,...,xN).

The following permutations of coordinates of particles (underlined) are all examples of the consequences
of exchanging particles for a completely symmetric wavefunction (i.e., the many-particle wavefunction is
unchanged)

i. One permutation

U(x1,x2,23,...,0N) = ¥(r2,21,23,...,2y) (Permuting z; and x2)
ii. Two total permutations

U(x1, 22,23, 23,24, ...,2N) = VY(22,21,23,24,...,2N) (First permutation: Permuting x; and x3)
= WU(xo,x3,21,24,...,2n) (Second permutation: Permuting z; and x3)

iii. Three total permuations

U(x1, 22,23, 24, ...,2Nn) = V(x2,21,23,24,...,2N) (First permutation: Permuting ; and x9)
= U(z9,23,21,%4,...,2y) (Second permutation: Permuting z; and z3)
= Y(w3,22,71,24,...,2n) (Third permutation: Permuting z» and x3)
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Continuing in this manner, you can perform any number of permutations to show that the many-particle
is unchanged for each exchange of particles.

o The wavefunction for indistinguishable bosons must be a completely symmetric wavefunction
with respect to exchange of any two particles.

Antisymmetric Wavefunction: An antisymmetric wavefunction of two-particles ¥(x1,x2) pro-
duces a wavefunction that is related to the original wavefunction as follows when the two particles are
exchanged:

\I/(xg, 331) = —\I/(.%'l, .%'2).

A completely antisymmetric wavefunction of N particles ¥ (z1,x9,z3,...,2xN) produces a wavefunc-
tion that is related to the original wavefunction as follows when two particles are exchanged. The following
permutations of the coordinates are all examples of the consequences of exchanging particles for a com-
pletely antisymmetric wavefunction

i. One permutation

U(x1,x2,23,...,2n) = =V (22, 21,23,...,2y) (Permuting z; and x2)

ii. Two total permutations

V(xy,z2,23,T4,...,2N) = —Y(T2,21,23,24,...,TN) (First Permutation: Permuting 1 and x3)
= —[-¥(xo,23,21,24,...,2N)] (Second Permutation: Permuting x; and x3)
= U(x9,23,21,%4y...,ZN) (Simplifying —1 x —1 for two permutations)

iii. Three total permutations

U(x1, 22,23, 24,...,2Nn) = —W(x2,21,23,24,...,TN) (First Permutation: Permuting 27 and x5)
= —[-¥(x2,23,21,24,...,2N)] (Second Permutation: Permuting z; and x3)
(
(

U (xo, T3, L1, T4, .., TN) Simplifying —1 x —1 for two permutations)
= —U(x3,22,21,%4,...,ZN) Third Permuation: Permuting x5 and x3)

Continuing in this manner, you can perform any number of permutations to show that the many-particle
wavefunction develops a plus or minus sign for each exchange of particles depending upon whether the
number of exchanges was even or odd, respectively.

o The wavefunction for indistinguishable fermions must be a completely antisymmetric wavefunc-
tion with respect to the exchange of any two particles.
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Consider the following conversation regarding the only two ways of constructing a wavefunction for iden-
tical particles which are indistinguishable (either completely symmetric or completely antisymmetric with
respect to exchange of any two particles).

Student 1: Since there is no measurement we can perform to distinguish different identical particles in
a system consisting of N identical particles, the wavefunction must reflect this symmetry.

Student 2: I agree with Student 1. There are two possible ways to construct the wavefunction for a
system of N non-interacting indistinguishable particles from the single-particle wavefunctions for that
system. The wavefunction could be either completely symmetric or completely antisymmetric with re-
spect to exchange of two particles because it is || that determines the measurable properties and the
overall sign of the many-particle wavefunction is not important.

Explain why you agree or disagree with the students.

Consider the following conversation regarding the eigenvalues of the “permutation operator.”

Student 1: Let’s consider the permutation operator lf’ij acting on a many-particle stationary state
wavefunction for a system of identical particles. The permutation operator sz'j acting on the many-
particle stationary state wavefunction exchanges particle ¢ and particle j in the many-particle stationary
state wavefunction.

Student 2: I agree. If the permutation operator ]515 is applied twice, the original wavefunction is
obtained. That is,

2
PV (21,29, Ty ooy Ty, ON) = V(X1 Ty Ty, Ty, XN,

Therefore, ]55 =1 , in which I is the identity operator. Thus, the eigenvalues of the permutation operator
]5ij are £1. The eigenvalue 1 corresponds to the completely symmetric bosonic wavefunction and the
eigenvalue —1 corresponds to the completely antisymmetric fermionic wavefunction.

Explain why you agree or disagree with the students.
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3.3.1 Stationary State Wavefunction for a System of N Indistinguishable Fermions

e Now let’s consider the case in which the identical particles are indistinguishable fermions.

e We will begin with a system of two fermions and then consider a system of three fermions and finally
consider a system of N fermions.

7. Consider a system of two non-interacting identical fermions in which 1y, (x) and v, (z) are the single-
particle wavefunctions for the system and nq # no. Choose all of the following normalized wavefunctions
that are appropriate for a system of two non-interacting fermions considering that indistinguishable
fermions must have a completely antisymmetric wavefunction.

() Wny (21)ny(
(b) 21)Yn, (22)
() —5[tni (@1)¢n, (22) + Yy (T2) 1, (21)]
(d) (z1)
)

x1) (same coordinate)

—~~

—_

d [@Z)nl 21)Yn, ($2) — Yn, ($2)¢n2 (1:1)]

(e (1), (x2) (same state label ny)

33 F

Consider the following conversation regarding the wavefunction for a system of two non-interacting indis-
tinguishable fermions.

Student 1: For a system of two non-interacting indistinguishable fermions, the wavefunction describing
the system is ¥y, (21)¥n, (z2), in which ¥, (1) and ¥, (x2) are the single-particle wavefunctions for the
two-particles.

Student 2: I disagree. If the system consists of two fermions, there is no way to distinguish which
fermion is in the state labeled by n; and which is in the state labeled by ns. The wavefunction must
reflect this symmetry.

Student 3: I agree with Student 2. The wavefunction describing a system of non-interacting indis-
tinguishable fermions must be completely antisymmetric. Therefore, the normalized wavefunction for a
system of two non-interacting fermions must be %[wm (21)Uny (22) — Pny (22)8n, (21)].

Explain why you agree or disagree with each student.

!The wavefunction for a system of indistinguishable fermions must always be completely antisymmetric. This must also be true
when the system includes interactions between the indistinguishable fermions so that the stationary state wavefunction cannot be

expressed as %[d)m (1) %o (@2) — Yny (22)¥n, (21)].
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Consider the following conversation regarding whether the Pauli exclusion principle and identical fermions
having a completely antisymmetric wavefunction are consistent with each other.

Student 1: The fact that a wavefunction for a system of fermions must be completely antisymmetric is
consistent with the Pauli exclusion principle.

Student 2: I thought the Pauli exclusion principle states that no two fermions can be in the same
single-particle state. How is that consistent with the wavefunction being completely antisymmetric?
Student 1: Let’s suppose we have two fermions in the same single-particle state. Then n; = ns and the
wavefunction would be ¥(z1,z2) = %[1#”1 (1)¥n, (x2) — Yn, (£2)Yn, (x1)] = 0. Thus ¥(z1,z2) = 0 is not
a possible wavefunction.

Student 3: The same is true for a system of more than two indistinguishable fermions. Since a system of
fermions has a completely antisymmetric wavefunction, no two fermions can be in the same single-particle
state. If you try to put two or more fermions in the same state, the wavefunction will be zero for the
N-fermion system.

Explain why you agree or disagree with Student 1 and Student 3.

Consider the following conversation regarding whether different orderings of the single-particle stationary
state wavefunctions yield different many-particle wavefunctions.
Student 1: The basis states for a system of non-interacting identical fermions with only two available

single-particle states n; and ngy are d)n1 (xl)d}nQ (fL‘Q), an (332)¢n1 (561), wTLQ (151)%1 (mZ)v and ?/)m (x2)¢n2 (xl)
The normalized many-particle stationary state wavefunction for a system of two indistinguishable fermions

is ﬁ [¢n1 (371)77Z)n2 (.Tg) + 7vz)nz (m2)¢n1 (ml) - ¢n2 (951)%1 (17) - wn1 (1:2)1/]712 (ml)} :

Student 2: I disagree with Student 1. The terms ¥, (z1)¥n,(x2) and ¥, (22)Yn, (x1) represent two
ways to write the same basis state. Changing the order of the single-particle wavefunctions does not give
a different basis state.

Student 3: I agree with Student 2. The expression ﬁ [Vn, (1) ny (X2)+Fn, (22) V0, (1) —ny (21) 0, (22)—

(O (m2)¢n2 (:El)] = ﬁ[mpnl (wl)wHQ (1'2) — 2¢n, (ml)’(vbm (552)] = tn, ($1)@Z)n2 (xQ) — Yy ($1)¢n1 ($2)’ which is

not a properly normalized wavefunction. The normalization factor should be %

Explain why you agree or disagree with Student 1 and Student 3.

. Is the completely antisymmetric wavefunction \%Wnl(l’l)l/}ng (x2) — ¥n, (22)Yn, (x1)] a stationary state
wavefunction for the two-fermion system? Explain.
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Consider the following conversation regarding whether after antisymmetrizing the wavefunction for a
system of two non-interacting fermions, the state remains a stationary state wavefunction of the many-
particle system with ny # ns.

Student 1: When we completely antisymmetrize the wavefunction for two fermions, the wavefunction
is U(xy,z0) = %[Tbm (21)¥ny (x2) — n, (x2)n, (21)]. However, since this is a linear superposition of two
basis states, it is not a stationary state wavefunction for the two-particle system.

Student 2: I disagree with Student 1’s claim that U(xi,z2) = \%[wm (21)Vny (2) — Vny (22)n, (21)]
is not a stationary state wavefunction for the two-particle system. If we completely antisymmetrize the
wavefunction for a system of two non-interacting fermions, then this completely antisymmetric wave-
function ¥(zy,xz2) = %[¢nl(l‘1)wn2 (x2) — n, (x2)n, (21)] constructed from products of single-particle
wavefunctions is a stationary state wavefunction for the two-particle system. That is,

~

HU(21,22) = F{ G5 (010 (22) = o, (22) 0, (@1)]}

= By { 5l (01) 86 (02) = o, (22)ma (21)] + Bz { T [ty (20) g (22) = Y (@2) 0 (1))}
= B{ 5[, (210 (72) =, (22) 850 (1))}

= E‘l’(:l)l,xg).

This is true because each basis state in the product space satisfies the TISE with the same energy
E=F+E

Explain why you agree or disagree with each student.

Use the following questions to check your answer to the preceding question about the conversation.

9. Consider a system of two non-interacting identical fermions. As we learned, the Hamiltonian for a system
of two non-interacting identical particles is given by H = H; + Hs. Using the TISE, determine whether
the completely antisymmetric wavefunction %W)m(ﬂ?lﬁﬁng (x2) — Yn, (2)Un, (x1)] is a stationary state
wavefunction for the two fermion system.

A

H\Il(xhx?) = I:I{%W}nl (161)%2@2) - %1(902)?1}@(?31)]} =

10. What is the energy for a system of two non-interacting identical fermions in which one fermion is in
a single-particle state labeled by n; with energy E,, and the other fermion is in a single-particle state
labeled by ng with energy E,,,?
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11.

12.

13.

e Now, let’s construct the completely antisymmetric wavefunction for a system of more than one
non-interacting, indistinguishable fermion.

e We will begin with a system of two indistinguishable fermions followed by a system of three indis-
tinguishable fermions.

Starting with the expression ¥y, (21)¥n,(22), construct the completely antisymmetric wavefunction for
a system of two non-interacting, indistinguishable fermions by permuting the coordinates (hold 7y and
ny fixed) and combining the terms with different permutations to make the wavefunction completely
antisymmetric.

Starting with the expression ¥, (21)1n,(x2), construct the completely antisymmetric wavefunction for a
system of two non-interacting, indistinguishable fermions by permuting the labels n; and ngy for the states
(hold z; and x5 fixed) and combining the terms with different permutations to make the wavefunction

completely antisymmetric.

Compare your answers to questions 11 and 12 and state the reasoning for what you found.

Consider the following conversation regarding constructing a completely antisymmetric wavefunction for
a system of two indistinguishable fermions starting with the expression 1y, (1)¥n, (z2).

Student 1: If we start with the expression ¢y, (x1)¥n,(z2), we can construct a completely antisym-
metric wavefunction by interchanging the two single-particle wavefunction labels, multiplying
the new permutation by -1 and then summing over all the permutations, which in this case is just
two permutation. If we permute nq and ng in ¥y, (€1)¥n, (z2), the new term is —t)p, (1), (v2). Af-
ter normalization, the completely antisymmetric wavefunction for a system of two identical fermions is
U(x1,22) = 5[tn, (£1)Wns (22) = tng (1)1, (22)]-

Student 2: If we start with the expression 1y, (1)¥n,(z2), we can construct a completely antisym-
metric wavefunction by interchanging the coordinates, multiplying the new permutation by -1 and
then summing over all the permutations, which in this case is just two permutation. If we permute
1 and g in ¢y, (1), (22), the new term is —1y,, (2)Yn,(21). The sum of the terms after nor-
malization for the completely antisymmetric wavefunction for a system of two identical fermions is
U(w1,22) = 5 [tn, (21)Uny (22) = P, (2) U0, (21)]-

Student 3: I agree with both Student 1 and Student 2. Both students constructed the same completely
antisymmetric wavefunction. The single-particle wavefunctions are not operators, so we can switch the
order of single-particle wavefunctions, i.e., ¥, (£2)Vn, (1) = Vn,(x1)¥n, (r2). The completely antisym-
metric wavefunction can be generated by interchanging either the coordinates or the labels for the states.

Explain why you agree or disagree with the students.
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14.

Consider the following conversation regarding constructing a completely antisymmetric wavefunction for
a system of indistinguishable fermions by switching both the coordinates and the labels for the states.
Student 1: If we interchange both the labels for the states and the coordinates, the resulting wavefunc-
tion is a completely antisymmetric wavefunction for the system of identical fermions.

Student 2: I disagree with Student 1. Let’s consider a system of two indistinguishable fermions.
If we start with the basis state ¥, (x1)1n,(x2) and interchange two single-particle wavefunction la-
bels and multiply the new permutation by -1, the new term is —,(21)Yn, (x2). Now if we inter-
change the coordinates of the two-particles and multiply the new permutation by -1, the new term is
Uiy (22)Un, (1) = Pn, (1), (z2). By switching both the coordinates and the labels, we recovered the
original expression and did not generate a new term. The original expression 1y, (1)1, (z2) that we got
back by exchanging both the labels for the states and the coordinates is not antisymmetric and therefore
it cannot be the wavefunction for a system of two indistinguishable fermions.

Student 3: I agree with Student 2. For a system of indistinguishable fermions, we cannot generate a
completely antisymmetric wavefunction by switching both the coordinates and the labels for the states.
We should only permute one of them to generate a completely antisymmetric wavefunction.

Explain why you agree or disagree with each student.

Starting with the expression vy, (1)1n, (€2)Yn,(z3), construct the completely antisymmetric wavefunc-
tion for the system of three indistinguishable fermions. Hint: Switch either the coordinates or the states
(but not both) two at a time and remember to make the wavefunction completely antisymmetric by
multiplying the new permutation by -1 each time you interchange two particles. Two interchanges will
produce -1 x -1 =1 times the new permutation. Then sum all of the permutations and normalize the
completely antisymmetric wavefunction.
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Consider the following conversation regarding the number of terms and the normalization factor for a
completely antisymmetric wavefunction for a system of indistinguishable fermions.

Student 1: When constructing the completely antisymmetric wavefunction for a system of three indis-
tinguishable fermions, how do I know that I have found all the possible permutations?

Student 2: In general, for a system of N indistinguishable fermions, there are N! permutations of the
labels. For example, there are N! permutations of the coordinates x1,xs,...,xxy or N! permutations of
the labels for the single-particle states 1y, ¥n,, ..., %¥n,. The normalization factor is ﬁ

Student 3: I agree with Student 2. For a system of three indistinguishable fermions, the completely

antisymmetric wavefunction will have 3! = 6 terms and the normalization factor will be %.

Explain why you agree or disagree with Student 2 and Student 3.

Consider the following conversation regarding a method for constructing completely antisymmetric wave-
functions for indistinguishable fermions.

Student 1: To find the completely antisymmetric wavefunction for a system of three indistinguishable
fermions, we start with the expression ¢, (21)¥n, (22)1¥n,(z3) and then find all possible permutations of
either the coordinates (z1,x2,x3) or the state indices (ni,n2,n3). Each time we interchange two labels,
we multiply the new permuted term by -1. Once we find all the permutations, we add them and normalize
the completely antisymmetric wavefunction obtained.

Student 2: Although I agree with Student 1’s method for more than two-particles, it can be easy to
make a mistake with the sign of each term or omit a term altogether. A more systematic approach to
help eliminate these sign mistakes is to use the “Slater determinant”. For three-particles, the Slater
determinant is

@Z}Tu (‘7:1) ¢n2(1:1) ¢n3($1)
Al thny(22) Wny(@2) Uny(m2) | =
¢n1 ($3) ¢n2 (1‘3) ¢TL3 (553)

Al (21)1n, (22)ng (3) — Py (21) Vg (22) 100, (03) — Py (21) Yy (22) 10 (23)
FPny (1) Ung (22)n, (23) + Yng (21)Vn, (22)Vny (23) — Yng (21)Vn, (22) Y, (23)]

in which A is the normalization constant which needs to be found separately. Here, A = \/%' = % for a

system of three fermions since each single-particle state is itself normalized. The Slater determinant can
equivalently be expressed as

| o) oo O () () () — ey (1) @) 2) — i, (@) 0 )

wnz (x ) ¢n2 (xQ) ¢n2 (x3)
%3 (xi) %3 (.7}2) wng (3’53) +¢n1 (1‘2)1/%2 ($3)¢n3 ($1) + ¢n1 ($3)7pn2 (x1)¢n3 ($2) - ¢n1 ($3)1/)n2 ($2)¢n3 (xl)]

Student 3: I agree with Student 2. The wavefunction is the same using either form of the Slater deter-
minant since the rows and columns are transposed. Also, the Slater determinant works for a system of
any number of fermions although even this method can become tedious when applied to more than three

fermions.

Explain why you agree or disagree with the students.
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15. Using the Slater determinant, determine the stationary state wavefunction of a system of two fermions
and check your answer to question 7.

Consider the following conversation regarding the Slater determinant and the Pauli exclusion principle
for a system of two identical fermions.

Student 1: The Slater determinant yields a many-particle wavefunction which is consistent with the
Pauli exclusion principle. For example, for a system of two fermions, if we put both fermions in the same
single-particle state, then

/l/}nl (ml) /l/}nl(xQ)
lﬁm ($1) wnl(fﬁz)

which is not be a possible wavefunction since zero represents the absence of a wavefunction.

Student 2: I agree with Student 1. We can extend the Slater determinant method to find the many-
particle wavefunction for a system with more than two particles. Consistent with Pauli’s exclusion prin-
ciple, having two particles in the same single-particle state produces two columns or rows with the same
entries so the Slater determinant of the many-particle wavefunction is zero, which is not a possible wave-

= tn, ($1)¢n1 (ZL‘Z) - ¢n1 (ZEZ)T;Z)nl (331) =0,

function.

Explain why you agree or disagree with the students.
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*CHECKPOINT: Check your answers to questions 7-14. **

7.d
8. Yes, the completely antisymmetric wavefunction %[wm (1) ¥y (2) — Y, (T2)Yn, (z1)] is a station-

ary state wavefunction for the two fermion system as it satisfies the TISE, ﬁ\Il(xl, x9) = EV(x1,x9)
9.

A (0y,22) = (8 4 F) { 5[, (20) s (2) = oy (@2) 0, (21)]}
= B { G50 @) (o2))} ~ F {5l e2) o)
+H, { L [, (21) 6y (@2)) b — B { L5 (2, (1] |
= By { J5ltn, (@1)0ns (22)]} = By { J5[000s (@2)0ms (21)]
o+ Engy { J5tm, (21)na (22)] } = By { F5lu0m, (2200 (1)) |
{% Y (1) (2) = U (22)6n (1)] |
By { 5 0m, (1), () — oy (2) s (20)]}
(Bt ) {5 m, (21 (22) = by (1) (2)]

= F {%[w’m (afl)wRQ (xQ) - wnl (-%'2)¢n2 (1‘1)]} in which F = Enl + En2
= E¥(z1,2)

[
IS
”“ﬁ

f_/;\

10. E=E,, + E,,

11. ‘ll(xlva) = %W)nl (xl)d}nz (xQ) — Un, (902)%2 (‘Tl)]

12 W(x1,22) = 5 [thn, (£1)ny (02) — Py (21) 0, (22)]

13. The completely antisymmetric wavefunction for the system of two fermions is the same if we

permute either the coordinates or the labels for the states (but NOT both simultaneously).
14.

Permutation Switch New Permutation
wnl (xl)wm (1‘2)1/1”3 (xS) ny <> N2 —%2 (xl)wnl (x2)¢n3 (l‘g)
— U, (T1)Uns (22)Vny (23) | 1 <> 13 | Py (21) Y0, (22) V0, (23)
Uy (21)n, (22) Vg (23) | 12 <> 13 | =Py (1) ng (22) V0, (23)
_¢n2 (CC])Q,Z)nl ($2)¢n3 (1‘3) ni <> n3 ¢n2 (561)?/)713 (-732)¢n1 (.Tg)
Ung (21)Yn, (T2)n, (23) | n1 > o | —Png (21)Yny (22) Y0, (73)

Adding the different permutations, we get the completely antisymmetric wavefunction

\}6[¢n1 ($1)¢n2 (x2)¢n3 (x?)) - T/an (xl),(vbnl ($2)7,Z)n3 (x?)) + sz)nza (x1)¢n1 (xQ)d)nz (w3)
_wm(zl)

\I’(l'l, 2, 333) -

n3 ($2)¢n2 (:L‘g) + 1/}712 ("L‘l)wm, (xQ)wm ($3) - wng ($1)7f)n2 (1‘2)1%1 (1'3)}

15. %W)nl ($1)¢n2 ($2) - ¢n2 ($1)¢n1 (xQ)]

If any of your answers do not match the checkpoint, go back and reconcile any differences you may have
with the checkpoint answers.

Summary for the Properties of the Wavefunction for Fermions

e The wavefunction for a system of indistinguishable fermions is completely antisymmetric with respect
to exchange of any two particles.
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16.

3.3.2 Stationary State Wavefunction for a System of N Indistinguishable Bosons

e Now let’s consider the case in which the particles are indistinguishable bosons.

Consider a system of two non-interacting, indistinguishable bosons in which )y, () and v, (x) are the
single-particle wavefunctions for the system (n; # ng). Choose all of the following wavefunctions that are
appropriate for a system of two non-interacting indistinguishable bosons considering that bosons must
have a completely symmetric wavefunction.

Consider the following conversation regarding the wavefunction for a system of two non-interacting indis-
tinguishable bosons.

Student 1: For a system of two non-interacting, indistinguishable bosons, if the bosons are in the same
single-particle state, say v, , the wavefunction describing the two-particle system is 1y, (21)¥n, (z2).
Student 2: I disagree. If the system consists of two indistinguishable bosons, the bosons cannot be
in the same single-particle state. So, 1y, (1)¥n, (z2) is not a possible wavefunction for a system of two
non-interacting, indistinguishable bosons. ¥, (z1)¥, (x2) is the wavefunction for distinguishable parti-
cles only.

Explain why you agree or disagree with each student.

Consider the following conversation regarding two indistinguishable bosons in the same single-particle
state.

Student 1: If we have a system consisting of two indistinguishable bosons, then the Pauli exclusion
principle tells us that the bosons must be in different single-particle states.

Student 2: I disagree with Student 1. The Pauli exclusion principle applies only to fermions. Since
the wavefunction for a system of indistinguishable bosons is symmetric with respect to exchange of two
particles, the wavefunction is not zero when the indistinguishable bosons are in the same single-particle
state.

Student 3: I agree with Student 2. The antisymmetrized wavefunction for two indistinguishable fermions
in the same single-particle state is zero, which is not a possible wavefunction consistent with Pauli’s ex-
clusion principle. However, for two indistinguishable bosons, if both bosons are in state nj, then the
normalized two-particle wavefunction would be 1y, (x1)¥n, (z2).

Explain why you agree or disagree with each student.
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Consider the following conversation regarding two indistinguishable bosons having the same two-particle
stationary state wavefunction as a system of identical particles that can be treated as distinguishable.
Student 1: For two indistinguishable bosons, if both bosons are in state ny, then the normalized two-
particle wavefunction is ¥y, (z1)¥n, (x2).

Student 2: I disagree with Student 1. The wavefunction ), (x1)¥n, (z2) is not a possible stationary state
wavefunction for a system of bosons. The wavefunction for a system of indistinguishable bosons must
be completely symmetric and we must have a sum of terms in the wavefunction for it to be completely
symmetric. The wavefunction ¥, (1)1, (x2) is only possible for a system of identical particles that can
be treated as distinguishable.

Student 3: I agree with Student 1 and disagree with Student 2. A completely symmetric wavefunction
does not necessarily have to be written in terms of a sum. The wavefunction ¢, (1)¥n, (z2) is completely
symmetric with respect to exchange of the two particles. If all of the indistinguishable bosons are in the
same single-particle state, then the many-particle wavefunction for a system of indistinguishable bosons
is the same as the wavefunction for a system of identical particles that can be treated as distinguishable.

Explain why you agree or disagree with each student.

17. Check whether the wavefunction vy, (1)1, (z2) satisfies the TISE and is symmetric with respect to ex-
hange of the two particles.

Consider the following conversation regarding the wavefunction for a system of two non-interacting indis-
tinguishable bosons when ny # no.

Student 1: For a system of two non-interacting indistinguishable bosons, if the two bosons are in differ-
ent single-particle states, the wavefunction describing the two-particle system is ¥, (€1)1n, (22), in which
tn, (z1) and 1, (x2) are the single-particle wavefunctions for the two-particles.

Student 2: I disagree. If the system consists of two bosons, there is no way to distinguish which boson
is in the single-particle state denoted by n; and which is in the single-particle state denoted by no. The
wavefunction must reflect this symmetry.

Student 3: The wavefunction describing a system of non-interacting indistinguishable bosons must be
completely symmetric.?2 Therefore, the two-particle wavefunction for a system of two non-interacting, in-
distinguishable bosons, where the bosons are in different single-particle states, must be % [Yn, (1) n, (x2)+

wm ($1)¢n1 (x2)]

Explain why you agree or disagree with each student.

2The wavefunction for a system of indistinguishable bosons must always be completely symmetric. This must also be true when
the system includes interactions between the indistinguishable bosons so that the stationary state wavefunction cannot be expressed

as % [¢n1 (171)7/}”2 (xQ) + wnz (xl)wTu (xQ)]
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18. Does the two-particle wavefunction %[1#”1 (1)¥ny (2) + Yy (21)Yn, (x2)] satisfy the TISE for a two-
particle system? Explain.

19. What is the energy for a system of two non-interacting identical bosons in which one boson is in a
single-particle state labeled by n; and the other boson is in a single-particle state labeled by ny?

20. For a system of two non-interacting, indistinguishable bosons, how many terms will be present in the
two-particle wavefunction for the system if the bosons are in different single-particle states?

21. For a system of two non-interacting, indistinguishable bosons, how many terms will be present in the
two-particle wavefunction for the system if the bosons are in the same single-particle state?

22. For a system of three non-interacting, indistinguishable bosons, how many terms will be present in
the three-particle wavefunction for the system if two of the three bosons are in the same single-particle
stationary state?
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23.

Consider the following conversation regarding the normalization factor for a system of indistinguishable
bosons.
Student 1: For a system of N non-interacting, indistinguishable bosons, the normalization factor must

1
be TN

Student 2: I agree with Student 1. To ensure we have a symmetric wavefunction, the many-particle
wavefunction will be the sum of all the permutations of the product of the single-particle wavefunctions.

Since there are N! ways to permute the N single-particle wavefunctions, the normalization factor will be
1

VNI

Student 3: I disagree with both Student 1 and Student 2. The normalization factor will be \/%' only if all

the bosons are in different single-particle states. If we have all of the bosons in one single-particle state,

N
H¢n($z) is a valid many-particle state, e.g., ¥n, (21)¥n, (x2)1n, (x3) is an appropriately symmetrized

i=1
wavefunction and the overall normalization factor for 1y, (1)tn, (2)¥n, (z3) is 1 since all three particles

are in the same single-particle state given by the label n;. We must be careful not to over count the
number of unique permutations of the N single-particle states.

Explain why you agree or disagree with each student.

Construct the completely symmetric normalized three-particle wavefunction for the system of three non-
interacting, indistinguishable bosons in the following cases:

(a) All the bosons are in different states.

(b) Two of the bosons are in the same state ;.

(c) All the bosons are in the same state i, .
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*CHECKPOINT: Check your answers to questions 16-23. **

16. c and e
17. Yes, the wavefunction ¢y, (21)¢n,(x2) is symmetric with respect to exchange of the two particles
and satisfies the TISE.

I:IWm (1) Y, (72)] = (Eny + Eny ) [Wn, (21)1n, (22)] = Etbn, (21) Y0, (22)]

18. Yes, the completely symmetric wavefunction —= [z/Jm (21)¥ny (22) +Vn, (€2)1n, (21)] is a stationary
state wavefunction for the two boson system as it satlsﬁes the TISE, HU (z1,z0) = EV (21, x2).

~

AV(z1,22) = <ﬂ1+ﬂ2>{%[wmm)wm(mz)+wn2<x1>wm<x2>]}
= m{LW. <m1>wn2<xz>]}+ﬂ1{ [ (1), ()
7, { L [, (0 wm(m}mg{ 3 (s (21) 0, (22)]}
- {7[ m<x1>wm<x2>]}+En2{—[wn2<x1>wm<x2>]}
Eny { L5 [tn, (1), (22)] } + Eny { 5 [wm(xl)wm(zz)]}
= (Em +Enz){ [ny (21)8n, (2) + Py (21) P, (22)]

_E {%wnl(m% (22) + Y (1) (22)] |
= EV(x1,19)

19E=F, +E,,

20. There must be two terms to satisfy the symmetrization requirement for bosons.

U(w1,22) = 5[¥n, (21)8ny (22) + Yny (1)1, (22)]

21. One. For example, if both bosons are in the single-particle state 1)y, , the many-particle stationary
state wavefunction is W (z1, z2) = ¥n, (21)Un, (z2)

22. There must be three terms to satisfy the symmetrization requirement for bosons. For ex-
ample, if two of the three bosons are in the single-particle state v,,, the many-particle station-

ary state wavefunction is W(x1,x9,x3) = %Wm (21)Yn, (22)8n, (23) + VYny (21)8n, (T2)Pn, (23) +

wnl (371)1/%2 ($2)¢n1 (1'3)]
23a.

\I/('rl? L2, x3) = %[wm (.1‘1)1/Jn2 (x2)wn3 ($3) + U, (:Bl)wnz (w3)¢n3 ($2) + U, ($2)¢n2 (wl)wm (1‘3)
+17[}n1 (332)¢TL2 (x3)wn3 (xl) + /llz)nl (x3)¢n2 (ml)d)ns (x2) + ¢n1 (xg)an ($2)¢n3 (1:1)]

23b. \IJ(xlv T2, x3) 7[%1 (x1)¢n1 (562)@[)712 (x?’) + n, (xl)d}nz (xQ)an (‘T?’) + wnz ($1)¢n1 (xQ)wnl ($3)]
23c. \IJ({L‘l,{EQ,ZL'g) ¢ ($1)¢n1 (1‘2)1%1 (1'3)

If any of your answers do not match the checkpoint, go back and reconcile any differences you may have
with the checkpoint answer.

Summary of Properties of the Wavefunction for Bosons

e The wavefunction for a system of indistinguishable bosons is completely symmetric with respect to
exchange of any two particles.
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24.

3.3.3 Hypothetical Case: Stationary State Wavefunction for a System of N Non-Interacting Identical Particles
if They Could Be Treated as Distinguishable

e Let’s contrast the cases of indistinguishable fermions and indistinguishable bosons with a hypothet-
ical case in which the identical particles could be treated as distinguishable.

e We compare the resulting many-particle stationary state wavefunctions to what was obtained for
indistinguishable fermions and indistinguishable bosons to learn why care must be taken to ensure
that the many-particle wavefunction reflects the indistinguishability of the particles.

e If identical particles (particles of one type with the same properties) could be treated as distin-
guishable, we can assign a distinct label (e.g., red, blue, etc.) to distinguish each particle from the
other particles in the system even though the particles have the same properties.

Consider the following conversation regarding the symmetrization requirements of the wavefunction for a
system of two non-interacting identical particles if they could be treated as distinguishable.

Student 1: For a system of two non-interacting identical particles which can be treated as distinguish-
able, we must still symmetrize the wavefunction.

Student 2: I disagree with Student 1. Since the particles can be treated as distinguishable, we can
determine which particle is in which single-particle state. There is no requirement to symmetrize the
wavefunction.

Explain why you agree or disagree with the students.

Consider a system of two non-interacting, identical particles which can be treated as distinguishable, in
which v, and v, are the single-particle wavefunctions for the system (n; # na). Choose all of the
following wavefunctions that are appropriate two-particle stationary state wavefunctions for a system of
two non-interacting, identical particles which can be treated as distinguishable.

Un, (1) (same label 1)
(2)
Un, (x2) (same label n;)

Uny :U)wnl(x) (same label x)

=

— ~— ~— ~—
._.

~—~ o~
8
[y

~— ~— ~—
3
»

Consider the following conversation regarding the appropriate wavefunctions for a system of two non-
interacting identical particles that can be treated as distinguishable.

Student 1: For a system of two non-interacting identical particles which can be treated as distinguishable,
the wavefunction describing the system can be )y, (21)¢n,(z2) in which n; # na. ¥, (x1) means that
particle 1 with coordinate z is in a single-particle energy state denoted by my. Similarly, 1y, (z2) means
that particle 2 with coordinate x2 is in a single-particle energy state denoted by ns.

Student 2: I agree with Student 1. Additionally, ¢n, (z1)1n, (22) is also a valid wavefunction for two
identical particles which can be treated as distinguishable as there is nothing prohibiting both particles
from occupying the same single-particle state with label n;.

Student 3: Only for the case when both particles occupy the same single-particle state 1y, is the two-
particle wavefunction 1y, (x1)n, (z2) the same as for the case of identical bosons.

Explain why you agree or disagree with the students.
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Consider the following conversation regarding constructing a wavefunction for a system of N non-interacting
identical particles which can be treated as distinguishable from the corresponding single-particle wave-
functions ¢y, i1 =1,2,...,00.

Student 1: For a system of IV non-interacting identical particles which can be treated as distinguishable,
a stationary state wavefunction describing the system must be a product of the single-particle wavefunc-
tions, i.e., U(z1,x2,...,TN) = Vn, (T1)Un, (2)Vng (23) - - - Ynp (TN)-

Student 2: How can the stationary state wavefunction describing the system be the product of the
single-particle wavefunctions ¥ (z1,x2,...,ZN) = ¥n, (€1)Vn, (22)Yns(x3) - - - Pn, (zn) when the Hamilto-
nian for a system of the NV non-interacting identical particles which can be treated as distinguishable is

N
the sum of the Hamiltonians of each particle H = Z H,?

i=1
Student 3: Let’s consider the stationary state wavefunction to be the product of the single-particle wave-
functions V(z1,x2,...,2N) = Yn, (1)U, (2)Vns (23) - - Ynpy (zn). From the TISE, HY = EV, where H
is the Hamiltonian, W is a stationary state wavefunction, and F is the energy of the many-particle system.
Thus,

N R N \
i=1 j=1
= (Hi +Ha + ...+ HN) (Y (1) (22) - - oy ()
= Hy (¢, (21)Vn, (2) - - Uy (2N)) + Ho(n (1) Uny (22) - - ooy (2n))
+.o.o+ HN(wm ($1)¢n2 ($2) .- -wnN (xN))
= By (Yny (21)%n, (22) - - Yy (TN)) + Eny (¥, (21) ¥y (22) - Py (Tn))
+.o.ot EﬂN (¢n1 (‘T;l)d}nQ (1'2) s QZ)HN (mN))
= (Eny 4+ Epy +... + EnN)<w%(xl)¢n2 (@2) - Uny(xN))
= (Bny 4 Eny + .+ Eny) (H z/)m(a:i)>
N v =1
= <Z E”i) H wnj (xj)
i=1 j=1
N
=E (H Vn, (wj>>
- E\PZ;117‘T:27' . .,.’IJN)
N
which is the constant F times the same wavefunction and so H ¥n, (z;) is a many-particle stationary state
=1

wavefunction. Therefore, the stationary state wavefunction for a system of N non-interacting particles
which can be treated as distinguishable is a product of the single-particle wavefunctions.

Explain why you agree or disagree with Student 1 and Student 3 .

32



25.

26.

27.

28.

29.

30.

Write the wavefunction for a system of two non-interacting, identical particles which can be treated
as distinguishable in which particle 1 is in the single-particle state labeled by n; and particle 2 is in a
single-particle state labeled by ne with ny # ns. Do not forget to use appropriate coordinates for each
particle.

Is the wavefunction in question 25 a stationary state wavefunction for a system of two non-interacting
identical particles which can be treated as distinguishable? Explain.

What is the energy for a system of two non-interacting identical particles which can be treated as
distinguishable in which particle 1 is in the single-particle state labeled by n; and particle 2 is in a single-
particle state labeled by n9?

Compare your answer for question 27 to the energy for a system of two indistinguishable particles (ques-
tions 10 and 19for fermions and bosons, respectively) where one particle is in a single-particle state labeled
by n; and the other particle is in a single-particle state labeled by na.

For a system of N non-interacting identical particles which can be treated as distinguishable, write the
stationary state wavefunction for the N-particle system, in which 1), is the single-particle wavefunction
for the i** particle. Do not forget to use appropriate coordinates for each particle.

Write the stationary state wavefunctions for a system of two non-interacting indistinguishable fermions
and a system of two indistinguishable bosons (for the distinct single-particle states t,, and vy,) and
compare to the stationary state wavefunction for a system of two non-interacting identical particles which
can be treated as distinguishable in question 25.
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** Checkpoint: Check your answer to questions 24-30. **

24. b and c

25. W(x1,22) = Yp, (21)¥n, (22)

26. Yes. HU = (Hy + Ha)tbn, (21)¢n, (¥2) = (En; + Eny)tn, (€1)thn, (22) = BV (21, 22)

271. E=FE,, + E,,

28. The energy of a system of two identical particles which are indistinguishable fermions or bosons is
the same as the energy for a system of two identical particles which can be treated as distinguishable,
for which £ = E,,, + E,, for all three cases.

N
29. \I’($17$2> cee ,I'N) = H¢nz($z) = ¢n1 (901)7%2 (1'2) T T;Z)nN ($N)
i=1

30. The stationary state wavefunctions for two non-interacting identical particles occupying the two
distinct single-particle states v,,, and 1, are given in the following chart

System Stationary State Wavefunction

Distinguishable Particles U(z1,x2) = Pn, (1)U, (z2)

or W(z1, ) = Yny(21)¢n, (z2)

Indistinguishable Fermions | ¥(z1,x9) = %[Qﬁm (21)Un,y (2) — Vny (21)Un, (x2)]
Indistinguishable Bosons U(zy,x2) = %[@Z)m(xlﬁbm (2) + Vny (1) n, (z2)]

The wavefunction for a system of indistinguishable particles must reflect symmetrization requirements.

If any of your answers do not match the checkpoint, go back and reconcile any differences you may have
with the checkpoint answer.

Summary of the Properties of the Wavefunction for Distinguishable Particles

e There is no symmetrization requirement for the many-particle stationary state wavefunction for a
system of identical particles which can be treated as distinguishable.

e The wavefunction for a system of non-interacting identical particles which can be treated as distin-
guishable is the product of the single-particle wavefunctions:

N
o \I’(xbe?’ . 'a:EN) = Hwnz(xz)
i=1

In two to three sentences, summarize the properties of the wavefunction for identical particles (particles of
the same type with the same properties). Be sure to describe the properties of indistinguishable fermions,
indistinguishable bosons, and identical particles if they could be treated as distinguishable.
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Fill in the table below with the properties of an N-particle system consisting of identical particles.

IDENTICAL PARTICLES

How would you explain to someone why in an N-particle quantum system consisting of identical particles, the particles must be treated as indistinguishable?

Type of Particle Properties

What is the constraint on the spin of a fermion?

INDISTINGUISHABLE Give an example of a physical system consisting of identical fermions in which the fermions must be treated as indistinguishable.
FERMIONS

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,
or No requirement)?

What is the constraint on the spin of a boson?

INDISTINGUISHABLE Give an example of a physical system consisting of identical bosons in which the bosons must be treated as indistinguishable.
BOSONS

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,
or No requirement)?

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,
HYPOTHETICAL CASE: | or No requirement)?

DISTINGUISHABLE
PARTICLES




Construct wavefunctions for the following systems of three non-interacting particles with correct normalization. Use the labels ni, ns, and n3 to
represent the single-particle stationary state wavefunctions of the system when necessary. If no such wavefunction is permissible, mark the box with
an X.

All 3 particles in the 2 particles in the same single-particle All 3 particles in different
same single-particle state state labeled by n single-particle states labeled by
labeled by n;. 1 particle in a different single-particle ni, no, and ns.

state labeled by ns.

INDISTINGUISHABLE
FERMIONS

INDISTINGUISHABLE
BOSONS

HYPOTHETICAL CASE:
DISTINGUISHABLE
PARTICLES




** Check your answers in the preceding tables.**

IDENTICAL PARTICLES

How would you explain to someone why in an N-particle quantum system consisting of identical particles, the particles must be treated as indistinguishable?

Nature is found to behave in this manner. A system of identical particles consists of N particles in which all the particles
are of the same type with the same properties and the particles must be treated as indistinguishable.

Type of Particle

Properties

What is the constraint on the spin of a fermion?

The N fermions must all be the same half-integer spin particle.

INDISTINGUISHABLE Give an example of a physical system consisting of identical fermions in which the fermions must be treated as indistinguishable.
FERMIONS

Electrons in a metal.

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,

or No requirement)?

Completely antisymmetric

What is the constraint on the spin of a boson?

The N bosons must all be the same integer spin particle.
INDISTINGUISHABLE Give an example of a physical system consisting of identical bosons in which the bosons must be treated as indistinguishable.
BOSONS

He-4 atoms for which there is overlap of the single-particle wavefunctions (i.e., the average separation between
atoms is less than the de Broglie wavelength).

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,
or No requirement)?

Completely symmetric

DISTINGUISHABLE
PARTICLES

HYPOTHETICAL CASE:

What is the symmetrization requirement of the N-particle wavefunction (i.e. Completely symmetric, Completely antisymmetric,
or No requirement)?

No Requirement




All 3 Particles in the 2 particles in the same single-particle All 3 particles in different
same single-particle state state labeled by n single-particle states labeled by
labeled by n;. 1 particle in a different single-particle ny, N2, and na.
state labeled by ns.

INDISTINGUISHABLE X X %[wm (@1)Uny (€2) Vs (23) — Yny (21)Vny (23)Un, (22)

FERMIONS 71/"711 (x2)1/}n2 (xl)wns (m3) + wm (xQ)wTu (‘r3)¢n3 (.271)
+wn1 ($3)¢n2 (131)@/}”3 (372) - ¢n1 (x3)¢n2 (132)1/%3 (ml)]

INDISTINGUISHABLE Yy (1)U, (22) U, (3) %[wm (1) Vn, (€2)Vn, (23) ﬁ[wm (1) Vny (22)Vng (£3) + Yny (21)8n, (23)8ns (72)
BOSONS +1/)m (Il)wng (IQ)wm (I3) wm (IQ)wnz (Il)wns ($3) + wnl ($2)¢n2 (l‘3)¢n3(1‘1)
Fny (21)Vn, (T2)Pn, (73)] F Py (23)ny (21) Py (02) + iy (23) V0, (22)Pny (71)]

HYPOTHETICAL CASE:

DISTINGUISHABLE Uy (1)U, (2)Un, (23) Uy (21)Un, (22) Yy (23)3 Uy (€1) 1y (22) Uy (23)*
PARTICLES

3 There are two other possibilities: ¥y, (21)¥n, (22)¥n, (¥3) and ¥, (21)Vn, (22)Pn, (x3)
4 There are five other possibilities: wm (xl)?an (l‘g)wng (.1‘2), wm (Jjg)ﬂ)nz (l‘l)wns (-733)> ¢n1 (1‘2)¢n2 ($3)¢n3 (xl)a %1 (333)7%2 ($1)¢n3 (732)7
and wnl (933)%2 (xQ)l/}M (xl)



Summary of the Properties of the Wavefunction for Non-Interacting Identical Particles

e Indistinguishable Fermions
— The basis states used to construct the many-particle stationary state wavefunction for a system of indis-
tinguishable fermions are written in terms of the products of single-particle wavefunctions.

— The coordinate corresponding to each particle is different in the many-particle stationary state wavefunc-
tion.

— The many-particle wavefunction describing a system of indistinguishable fermions must be completely
antisymmetric with respect to exchange of any two particles.
e Indistinguishable Bosons
— The basis states used to construct the many-particle stationary state wavefunction for a system of N
indistinguishable bosons are written in terms of the products of single-particle wavefunctions.

— The coordinate corresponding to each particle is different in the many-particle stationary state wavefunc-
tion.

— The many-particle wavefunction describing a system of indistinguishable bosons must be completely
symmetric with respect to exchange of any two particles.
e Hypothetical Case: Identical Particles if they could be treated as Distinguishable

— The basis states for the many-particle stationary state wavefunction for a system of identical particles
which can be treated as distinguishable can be written in terms of the product of the single-particle
wavefunctions.

— The coordinate corresponding to each particle is different in the many-particle stationary state wavefunc-
tion.

— There is no symmetrization requirement for the many-particle wavefunction for a system of identical
particles which can be treated as distinguishable.
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4 Examples of Finding Many-Particle Stationary State Wavefunctions and Energies

4.1 One-Dimensional Infinite Square Well (Ignoring spin)

Recall: The single-particle wavefunctions for the infinite square well are

2
@Dn(a:):\/»sin(mx) 0<z<a n=123,...
a a

and the single-particle energies are given by

2h2

31. Suppose we have two non-interacting particles, both of mass m, in a one-dimensional infinite square well
of width a (the well is between z = 0 and = = a). Find the ground state and first-excited state energies
of the many-particle system for the following cases:

(a) Indistinguishable fermions. (Ignore spin)

(b) Indistinguishable bosons. (Ignore spin)

(c) Hypothetical case: Identical particles which can be treated as distinguishable. (Ignore spin)

32. Construct the ground state and first-excited state wavefunctions for two non-interacting particles in that
infinite square well for the following cases:

(a) Indistinguishable fermions. (Ignore spin)

(b) Indistinguishable bosons. (Ignore spin)

(c) Hypothetical case: Identical particles which can be treated as distinguishable. (Ignore spin)
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Consider the following conversation regarding finding the ground state energy of the many-particle system

in a one-dimensional infinite square well of width a (ignore spin).

Student 1: For a system of two non-interacting identical particles, the energy is Ky, n, = En, + Ep, =
2 232 2 232

(e ) + (e ) = (o +03) (00) = (nd +03) Eu.

Student 2: I agree with Student 1. The ground state energy for a system of two identical particles

corresponds to the case in which both particles are in the single-particle state labeled by n; = ng = 1.

Thus, the ground state energy of the two-particle system is Fy 1 = (12 + 12) E, =2F

Student 3: I agree with Student 2 only for the cases in which the two particles are indistinguishable

bosons or particles which can be treated as distinguishable. In both cases, the particles are permitted

to occupy the same lowest single-particle state labeled by n1 = no = 1. However, two indistinguishable

fermions cannot occupy the same single-particle state. The ground state energy for a system of two

indistinguishable fermions is o = Ey1 = (12 + 2%) E; = 5E].

Explain why you agree or disagree with the students.

Consider the following conversation regarding finding the first-excited state energy of the many-particle
system in a one-dimensional infinite square well of width a (ignore spin).

Student 1: For a system of two non-interacting identical particles, the first-excited state energy is
ELQ = (12 + 22) FEy =5E;.

Student 2: I agree with Student 1 only for the cases in which the identical particles are indistinguishable
bosons or identical particles which can be treated as distinguishable. The ground state for a system of
two indistinguishable fermions corresponds to the case in which one fermion is in the single-particle state
labeled by n1 = 1 and the other fermion is in the single-particle state labeled by ny = 2. The first-excited
state energy for a system of two identical fermions corresponds to the case in which one fermion is in
the single-particle state labeled by n; = 1 and the other fermion is in the single-particle state labeled by
ng = 3. Thus, the first-excited state energy for a system of two fermions is F 3 = (12 + 32) FEy =10E;.

Explain why you agree or disagree with each student.
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Consider the following conversation about finding the ground state wavefunction of the many-particle
system involving a one-dimensional infinite square well of width a (ignore spin).

Student 1: For a system of two non-interacting identical particles, the ground state wavefunction is
U(xy,22) = 1(x1)P1(22).

Student 2: I agree with Student 1 only for the cases in which the identical particles are indistinguishable
bosons or particles which can be treated as distinguishable since in both cases the particles are permitted
to be in the same single-particle state. However, two indistinguishable fermions must be in different
single-particle states and the ground state wavefunction for a system of two indistinguishable fermions
must be completely antisymmetric.

Student 3: I agree with Student 2. The ground state wavefunction for a system of two indistinguishable

fermions is ¥ (z1,x9) = % (1 (z1)2(22) — Pa(w1)b1(z2)].

Explain why you agree or disagree with each student.

Consider the following conversation regarding finding the first-excited state wavefunction of the many-
particle system in a one-dimensional infinite square well of width a (ignore spin).

Student 1: For a system of two non-interacting identical particles, the first-excited state wavefunction
is (1, x2) = P1(21)2(w2).

Student 2: I agree with Student 1 only if the particles can be treated as distinguishable.

Student 3: I agree with Student 2. Also, the first-excited state wavefunction for a system of two indis-
tinguishable bosons ignoring spin is ¥ (x1, z2) = % [1(z1)2(z2) + Yo(x1)h1(x2)].

Student 2: I agree with Student 3. Furthermore, the first-excited state wavefunction for a system of
two indistinguishable fermions ignoring spin is ¥(x1, z2) = % (1 (21)Y3(x2) — Y3(z1)1(z2)].

Explain why you agree or disagree with each student.
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*CHECKPOINT: Check your answers to questions 31-32c¢. **

31a. Ground state: E = E; 4+ Ey = Zoh5 4 4n®h? _ 5m2h? _ 5o

2ma? + 2ma? 2ma?

First excited state:F = E1 + E3 = n*h? + On?h? _ sm?h? _ 10E4

2ma? 2ma? ma?

31b. Ground state: £ = F1 + Fy = ;’;’;22 4 xn2 _ mth? 2F,

2ma? ma?

. . 242 242 252
First excited state:F = E1 + Ey = ;mz 5 + é’;ngg = 527;15‘2 =5F;

3lc. Ground state: £ = E1+ E| = n2h? mh? _ w’h? 2F;

2ma? + 2ma? ma?

First excited state:F = E1 + Ey = ”2’?; 4 4n?h2 _ 5m2h? 5E;

2m 2ma? 2ma?

U(z1,20) = %Wl(ﬂ)%(@)—¢1($2)¢2(9€1)]

32a. Ground state: _ % [% sin (gxl) sin (2%302) - %sin (gm) sin (%ﬂxl)]
, L U(anm) = s [a(e)Ys(ea) — i (@2)ds(en)]
First excited: = % [% sin (gxl) sin (%”xg) - % sin (gxg) sin (%’racl)]

U(zy,m2) = P1(w1)ir(z2)

= % sin (%xl) sin (g:ﬁz)

U(wr,22) = 5 [a(@1)vpa(w2) + ¥r(@2)tha(21)]

First excited: M [% sin (Z,) sin (%”51?2) + %sin (Za2) sin (27”301)]

NG}
U(xy,x2) = Yi(x1)i(z2)

= % sin (ga:l) sin (gl‘g)

U(z1,22) = vY1(w1)2(2) or W(xy,x2) = @2112($1)1l)1(332)

= Zsin (Zay) sin (Zay) = Zsin (Z2) sin (Za2)

32b. Ground state:

32c. Ground state:

First excited: 2
a

If any of your answers do not match the checkpoint, go back and reconcile any differences you may have
with the checkpoint answers.
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33.

5 Counting the Number of Distinct Many-Particle States

e Now that we know how to construct stationary state wavefunctions from the single-particle wavefunctions
for indistinguishable fermions, indistinguishable bosons, and identical particles if they could be treated as
distinguishable, let’s determine the number of distinct many-particle states for the three different cases,
beginning with indistinguishable fermions.

e We will only consider systems in which there is no degeneracy in the single-particle wavefunctions (i.e.,
E,; # En; in which Ej, is the energy corresponding to the single-particle state ¢, and E, is the energy
corresponding to the single-particle state ;)

e Recall: The number of ways to arrange K identical objects among N available slots is (%) = ﬁlfﬂ'

CASE I: A Fixed Number of Single Particle States are Available to the System (but

the Total Energy of the Many-Particle System is NOT Fixed).

5.1 Determining the Number of Distinct Many-Particle States for INDISTINGUISHABLE FERMIONS
(no constraints on the total energy of the many-particle system)

5.1.1 Determining the Number of Distinct Many-Particle States for TWO INDISTINGUISHABLE
FERMIONS and Three Distinct Single-Particle States (no constraints on the total energy of the many-
particle system)

Suppose you have two indistinguishable fermions and three distinct single-particle states ¢y,, ¥n,, and
tn,. How many distinct two-particle states can you construct (neglecting spin)? Think about how you
could use the diagram below to answer this question by placing the fermions into the single-particle states.

Uny
Un,
Ung
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Consider the following conversation regarding the number of distinct two-particle states for a system of
two indistinguishable fermions and three distinct single-particle states ¢, ¥n,, and ¥y,,.

Student 1: For a system of two fermions and three distinct single-particle states v, ¥n,, and ¥y,
there are three available single-particle states for the first fermion. That leaves two single-particle states
for the second fermion since the second fermion cannot occupy the same single-particle state as the first
fermion. The number of two-particle states is 3 x 2 = 6.

Student 2: I agree with Student 1. Here is the diagrammatic representation for the 6 distinct two-
particle states:

Uny S 2 Yn, S 2 Yny
o Yy Yy o Yy
o Yy o Yy Vg
Uny S 1 Y, S L (1
o Yy Yy o’ Yy
o Vg o’ Vg Vg

Student 3: 1 disagree with Student 1 and Student 2. You are overcouting the number of distinct two-
particle states. Since the fermions are indistinguishable, we cannot distinguish which fermion is in which
single-particle state. We can only tell that one fermion is in single-particle state 1, and another fermion
in single-particle state v,,,. But there is no way to tell which fermion is in which single-particle state. This
indistinguishability is reflected in the antisymmetrized wavefunction. There are 3 distinct two-particle
states. Here is the diagrammatic representation for the 3 distinct two-particle states:

an o 1/)n1 @ 17[}711
@ wng 1/)n2 @ ¢n2
@ wng o qybng ¢n3

Explain why you agree or disagree with each student.

Consider the following conversation regarding the number of distinct two-particle states that you can
construct for a system of two indistinguishable fermions and three distinct single-particle states.
Student 1: The Pauli exclusion principle forbids two fermions from occupying the same single-particle
state. Each single-particle state can either have one or zero fermions.

Student 2: I agree. There are three distinct single-particle states available to the fermions and we must
choose any two for the fermions to occupy. The number of distinct two-particle states for a system of two
indistinguishable fermions and three distinct single-particle states is (g):ﬁlm, =3.

Explain why you agree or disagree with the students.
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34.

35.

5.1.2 Determining the Number of Distinct Many-Particle States for THREE INDISTINGUISHABLE
FERMIONS and Three Distinct Single-Particle States (no constraints on the total energy of the many-
particle system)

Suppose you have three indistinguishable fermions and three distinct single-particle states v, ¥p,, and
Yn,. How many distinct three-particle states can you construct (neglecting spin)? If you would like, you
can think about how you could use the diagram below to answer this question by placing the fermions
into the corresponding states.

Un,
Vny
Vny

Consider the following conversation regarding the number of distinct three-particle states for a system of
three indistinguishable fermions.

Student 1: For a system of three indistinguishable fermions and three available single-particle states,
there is only one distinct three-particle state. There must be one fermion is each single-particle state.
Student 2: I agree. There are three distinct single-particle states available to the fermions and we must
choose three single-particle states for the fermions to occupy. The number of distinct three-particle states
for a system of three indistinguishable fermions and three distinct single-particle states is (g) :ﬁlg), =1.

Explain why you agree or disagree with the students.

5.1.3 Determining the Number of Distinct Many-Particle States for N INDISTINGUISHABLE FERMIONS
(N > 1) and Three Distinct Single-Particle States (no constraints on the total energy of the many-particle
system)

Suppose you have N indistinguishable fermions (N > 1) and three distinct single-particle states vy, ,
Yny, and 1n,. How many distinct N-particle states can you construct (neglecting spin)?
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36.

37.

Consider the following conversation regarding the number of distinct three-particle states for a system of
N (N > 1) indistinguishable fermions.

Student 1: For a system of N fermions (N > 1) and three distinct single-particle states, there is no
possible way to place the fermions into the three distinct single-particle states such that no two particles
are in the same single-particle state. Therefore, this situation is impossible.

Student 2: I agree. We need at least as many distinct single-particle states available in a situation as
the number of fermions in order for such a many-particle system to be possible.

Explain why you agree or disagree with the students.

5.1.4 Determining the Number of Distinct Many-Particle States for N INDISTINGUISHABLE FERMIONS

(N > 1) and M Distinct Single-Particle States (M > 1) (no constraints on the total energy of the many-
particle system)

Suppose you have N fermions (N > 1) and M distinct single-particle states (M > 1). How many distinct
N-particle states can you construct (neglecting spin)?

In two to three sentences, describe in words how to determine the number of distinct N-particle states
for N indistinguishable fermions and M distinct single-particle states when there are no constraints on
the total energy of the many-particle system.

Let’s connect the number of distinct single-particle states with the number of possible many-particle
stationary state wavefunctions for fermions.

Write all the possible two-particle stationary state wavefunctions you found for two indistinguishable
fermions in three distinct single-particle states 1y, , 1¥n,, and 1, in question 33.
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*CHECKPOINT: Check your answers to questions 33-37. **

3. (2)=3
¢n1 L ] %Z)m @ 1/}711
@ an w’nz @ 1/}712
@ ¢n3 L ] Q;Z)TB ¢n$
34. (3)=1
@ 1/}711
@ wng
® f‘/}ng

35. 0. There cannot be more fermions than available single-particle states since that would mean there would
be more than one fermion in at least one single-particle state, which is not permitted.
36. The number of distinct N-particle states for a system of IV fermions with M available single-particle states

JN) M=N

" 0 M < N

37. ]
(2, 22) = ﬁ[wm (1) Yy (22) — Yy (22) V0, (21)]
Uy, 1) = jﬁwm (1) (22) — Py (£2)mn (21)]
W, 72) = ;5[% (21 (22) — Py (22)oma (1))

If any of your answers do not match the checkpoint, go back and reconcile any differences you may have
with the checkpoint answers.

Summary for Determining the Number of Distinct Many-Particle States of INDISTIN-
GUISHABLE FERMIONS for a Fixed Number of Single-Particle States (no constraints on
the total energy of the many-particle system)

e The number of distinct N-particle states for a system of N indistinguishable fermions with M available
single-particle states when N < M is (%)

e The number of distinct N-particle states for a system of N indistinguishable fermions with M available
single-particle states when N > M is 0.
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38.

5.2 Determining the Number of Distinct Many-Particle States for INDISTINGUISHABLE BOSONS
(no constraints on the total energy of the many-particle system)

5.2.1 Determining the Number of Distinct Many-Particle States for TWO INDISTINGUISHABLE
BOSONS and Three Distinct Single-Particle States (no constraints on the total energy of the many-particle
system)

Suppose you have two indistinguishable bosons and three distinct single-particle states vy, , ¥n,, and ¥y,,.
How many distinct two-particle states can you construct (neglecting spin)? Think about how you could
use the diagram below to answer this question by placing the bosons into the corresponding single-particle
states.

Un,
Vny
Vny

Consider the following conversation regarding the number of distinct two-particle states for a system of
two indistinguishable bosons and three distinct single-particle states ¥y, , ¥n,, and ¥y, available.
Student 1: For a system of two bosons and three distinct single-particle states v, ¥n,, and 1, there
are three available states for the first boson and three available states for the second boson. The number
of two-particle states is 3 x 3 = 9.

Student 2: I disagree with Student 1. You are overcounting since you are not taking into account the
fact that bosons are indistinguishable. If the bosons are in the same single-particle state, there are three
possibilities as follows:

1/)71 1 ¢n 1 @ L ] 1/1n 1
1/)712 @ @ ¢n2 T/an
° ° Vng Ung Vng

But, if the bosons are in different single-particle states, there are three possibilities since bosons are
indistinguishable and swapping the two bosons in the two single-particle states in each of the following
situations does not produce a new two-particle state:

%1 @ ¢n1 @ wnl
@ wng %2 @ wng
@ ¢n3 @ %3 wng

There are 6 distinct two-particle states for a system of two bosons and three distinct single-particle states.

Explain why you agree or disagree with each student.
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Consider the following conversation about a method for determining the number of distinct ways two
indistinguishable bosons can be arranged in the three distinct single-particle states.

Student 1: For a system of two bosons, there can be more than one boson in a given single-particle state.
We can treat the single-particle states as bins to be filled with bosons and dividers to separate the different
single-particle states or bins. For example, if the system had two bosons in the first single-particle state
then the first bin would have two bosons. For a system with three single-particle states available, we
would need two dividers between the three single-particle states. In the case of three single-particle states
and two bosons, we must find the number of possible arrangements of the two bosons and two dividers.
Student 2: I agree with Student 1. Furthermore, since the two dividers cannot be distinguished from one
another and the bosons cannot be distinguished from one another, we can permute the indistinguishable
dividers with the indistinguishable bosons to find all possible ways to permute two bosons in the three
single-particle states as follows:

Two Bosons in the First State

L @ ® | | | [

Two Bosons in the Second State

Two Bosons in the Third State

L @ o |

One Boson in the First State and One Boson in the Second State

One Boson in the First State and One Boson in the Third State

One Boson in the Second State and One Boson in the Third State

j \ L j \ Ld

Student 3: I agree with both Student 1 and Student 2. The number of distinct many-particle states
comes from the number of ways the two bosons and two dividers can be permuted. We have a total of four
objects (two bosons and two dividers) and we can find the number of ways to permute the two bosons
or equivalently the number of ways to permute the two dividers among the four objects. The number of
distinct two-particle states is (3): ﬁiz)! = 6.

Student 2: Yes! Since the dividers are indistinguishable, permuting them with each other does not give
us a new two-particle state. Similarly, since the bosons are indistinguishable, permuting them with each
other does not give us a new two-particle state.

Explain why you agree or disagree with the students.
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39.

40.

5.2.2 Determining the Number of Distinct Many-Particle States for THREE INDISTINGUISHABLE
BOSONS and Three Distinct Single-Particle States (no constraints 