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Finding the Splitting in the Hydrogen Atom Energy Spectrum
Due to an External Magnetic Field (Zeeman Effect)- PART I

1 Definition

For a given unperturbed Hamiltonian Ĥ0 and perturbation Ĥ ′, a “good” basis consists of a complete set of
eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0 (Ĥ0 remains diagonal everywhere since
the basis states are eigenstates of Ĥ0).

• Once you have a “good” basis for a given Ĥ0 and Ĥ ′, you can use the same expressions that you use in
non-degenerate perturbation theory for the perturbative corrections to the energies and energy eigenstates.

2 Notes for this tutorial:

* If you are not familiar with the steps to determine a “good” basis for finding corrections to the unperturbed
energies when the energy spectrum has degeneracy, please work through the pretest, tutorial and posttest
for Basics of Degenerate Perturbation Theory before working on this tutorial.

* A Hermitian operator Q̂ must satisfy the property Qij = (Qji)
∗. Here ∗ denotes the complex conjugate.

* For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use “=” or “is equal to”
instead of “

.
=” or “is represented by” as in the notation below

Q̂ =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .

* In this tutorial, “degeneracy” indicates degeneracy in the unperturbed energy eigenvalue spectrum, i.e., the
fact that more than one distinct energy eigenstate can have the same energy eigenvalue. For example, if

Ĥ0|ψa〉 = Ea|ψa〉 and Ĥ0|ψb〉 = Ea|ψb〉,

|ψa〉 and |ψb〉 are degenerate eigenstates of the Hamiltonian Ĥ0 since they correspond to the same energy
Ea.

* We will only consider the bound states of the hydrogen atom.

* The unperturbed bound state energies En are given by En = −13.6eV
n2 , n = 1, 2, 3, . . ..

* For any basis we choose, the radial parts of the wavefunctions Rnl (for given quantum numbers
n and l) will always be chosen to be the radial parts of a complete set of eigenstates of Ĥ0. In
other words, our focus will be on the choice of the angular part of the wavefunction in order
to find a “good” basis for degenerate perturbation theory for the given Ĥ0 and Ĥ ′ for the
hydrogen atom.

* We will restrict our focus to a finite subspace of the infinite dimensional Hilbert space.

– As an example of a degenerate subspace of the unperturbed Hamiltonian Ĥ0, only the subspace with
the principal quantum number n = 2 will be considered.

– The results can be generalized to any quantum number n.
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* The external magnetic field will be chosen to be a uniform, time independent field along the ẑ direction given
by ~B = Bextẑ.

* We will account for the coupling of the external magnetic field with both the orbital and spin angular
momentum.

* We will use the following notations interchangeably to write states in the uncoupled representation (in which
basis states are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ) with a given set of quantum numbers (notation for
quantum numbers is standard):

– |n l s ml ms〉
– |l, ml〉|s, ms〉 (if n is fixed)

– |l, ml, ms〉 (if n and s are fixed)

* ~J = ~L+ ~S

* We will use the following notations interchangeably to write states in the coupled representation (in which
basis vectors are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ) with a given set of quantum numbers (notation for
quantum numbers is standard):

– |n l s j mj〉
– |l, s, j, mj〉 (if n is fixed)

– |l, j, mj〉 (if n and s are fixed)

* In both Part I and Part II of this tutorial, we will consider the case in which s = 1
2 so this quantum number

may be suppressed in writing a state (e.g., |l ml ms〉 or |l j mj〉).

3 Physical Constants

Below is a list of physical constants used in this tutorial.

Planck’s constant: h̄ = 1.05× 10−34 J s

Mass of the electron: m = 9.11× 10−31 kg

Charge of an electron (magnitude): e = 1.60× 10−19 C

Speed of light: c = 2.99× 108 m/s

Permittivity of space: ε0 = 8.85× 10−12 C2/J m

Bohr radius: a = 4πε0h̄
2

me2
= 0.529× 10−10 m

Bohr magneton: µB = eh̄
2m = 5.79× 10−5 eV/T

Fine structure constant: α = e2

4πε0h̄c
≈ 1

137 = 7.30× 10−3
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NOTE : The following equations may be helpful.

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉

|ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉

Ŝ2|s ms〉 = h̄2s(s+ 1)|s ms〉 Ŝz|s ms〉 = h̄ms|s ms〉

Ŝ±|s ms〉 = h̄
√
s(s+ 1)−ms(ms ± 1))|s ms ± 1〉

L̂2|l ml〉 = h̄2l(l + 1)|l ml〉 L̂z|l ml〉 = h̄ml|l ml〉

L̂±|l ml〉 = h̄
√
l(l + 1)−ml(ml ± 1))|l ml ± 1〉

~J = ~L+ ~S

Ĵ2|l, s, j, mj〉 = h̄2j(j + 1)|l, s, j, mj〉 Ĵz|l, s, j mj〉 = h̄mj |l, s, j, mj〉

Ŝ2|l, s, j, mj〉 = h̄2s(s+ 1)|l, s, j, mj〉 L̂2|l, s, j mj〉 = h̄2l(l + 1)|l, s, j, mj〉

~L · ~S =
1

2
(Ĵ2 − Ŝ2 − L̂2) =

1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz
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4 Objectives:

Upon completion of this tutorial, you should be able to do the following:

1. Identify the degeneracy in the unperturbed Hamiltonian Ĥ0 in each degenerate subspace corresponding to
a principal quantum number n.

2. In order to find the first order corrections to the unperturbed energies of the hydrogen atom in the presence
of an external magnetic field, you should be able to determine:

• the unperturbed Hamiltonian Ĥ0 in both the coupled and uncoupled representation (for a given principal
quantum number n).

• whether the relativistic correction term Ĥ ′r is diagonal if the coupled or uncoupled representation is
chosen as the basis (for a given principal quantum number n).

• whether the spin-orbit interaction term Ĥ ′SO is diagonal if the coupled or uncoupled representation is
chosen as the basis (for a given principal quantum number n).

• whether the Zeeman term Ĥ ′Z is diagonal if the coupled or uncoupled representation is chosen as the
basis.

• whether a “good” angular part of the basis (angular basis) for a given Ĥ0 and perturbation Ĥ ′ is the
uncoupled representation, the coupled representation, or any arbitrary orthonormal basis found with
linear combinations of a complete set of the coupled or the uncoupled states.

The following questions focus on finding the various quantum numbers for a given principal quantum number
n.

1. Answer the following questions in the context of the hydrogen atom with Coulomb interaction between the
electron and the nucleus (spin quantum number s = 1

2 for the electron).

(a) For n = 1, list the possible values of l and the corresponding possible values of ml.

(b) For n = 1, list the possible values of ms for s = 1
2 .

(c) For n = 1, list the possible values of j and the corresponding possible values of mj .

(d) For n = 2, list the possible values of l and the corresponding possible values of ml.

(e) For n = 2, list the possible values of ms for s = 1
2 .

(f) For n = 2, list the possible values of j and the corresponding possible values of mj .

2. How many distinct states |n l s ml ms〉 are there in the uncoupled representation for n = 2?

3. How many distinct states |n l s j mj〉 are there in the coupled representation for n = 2?
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** Check your answers to questions 1-3: **

1a. l = 0;ml = 0
1b. ms = 1

2 ,−
1
2

1c. j = 1
2 ;mj = 1

2 ,−
1
2

1d. l = 0;ml = 0 and l = 1;ml = −1, 0, 1
1e. ms = 1

2 ,−
1
2

1f. j = 1
2 ;mj = 1

2 ,−
1
2 (appears twice, once for l = 0 and once for l = 1) and j = 3

2 ;mj = 3
2 ,

1
2 ,−

1
2 ,−

3
2

2. There are eight distinct states in the uncoupled representation. |n l s ml ms〉 =
{|201

201
2〉, |201

20− 1
2〉, |211

211
2〉, |211

21− 1
2〉, |211

201
2〉, |211

20− 1
2〉, |211

2 − 11
2〉, |211

2 − 1− 1
2〉}

3. There are eight distinct states in the coupled representation. |n l s j mj〉 = {|211
2

3
2

3
2〉, |211

2
3
2

1
2〉,

|211
2

3
2 −

1
2〉, |211

2
3
2 −

3
2〉, |211

2
1
2

1
2〉, |211

2
1
2 −

1
2〉, |201

2
1
2

1
2〉, |201

2
1
2 −

1
2〉}

If any of your answers do not match the checkpoint answers for questions 1-3, go back and reconcile any
difference you may have.

5 The Hydrogen Atom Placed in an External Magnetic Field

The Hamiltonian of the hydrogen atom placed in an external magnetic field is

Ĥ = Ĥ0 + Ĥ ′r + Ĥ ′SO + Ĥ ′Z = Ĥ0 + Ĥ ′fs + Ĥ ′Z (1)

in which

• Ĥ0 = p̂2

2m −
e2

4πε0

(
1
r

)
accounts only for the interaction of the electron with the nucleus via Coulomb

attraction

• Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term

• Ĥ ′SO = e2

8πε0
1

m2c2r3
~L · ~S is the spin-orbit interaction term

and combining the relativistic and spin-orbit terms

◦ Ĥ ′fs = Ĥ ′SO + Ĥ ′r is the fine structure term

• Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz) is the Zeeman term in which ~Bext = Bextẑ.

6 Unperturbed Hamiltonian for Hydrogen Atom (only accounts for the interaction of
the electron with the nucleus via Coulomb attraction)

Ĥ0 =
p̂2

2m
+ V (r) = − h̄2

2m
∇2 − e2

4πε0

(
1

r

)
(2)

6.1 Degeneracy of the Unperturbed Hamiltonian Ĥ0

4. What is one complete set of quantum numbers that describe the eigenstates of Ĥ0 given by equation (2)
(include spin degree of freedom)?

5. What is the unperturbed energy corresponding to Ĥ0 in equation (2) in terms of the principal quantum
number n?
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6. Based upon your answers to the two preceding questions, should there be degeneracy in the unperturbed
spectrum of hydrogen atom given by equation (2)? Explain.

7. What is the degeneracy of an energy level with energy En for a given n (including degeneracy due to spin
degrees of freedom)?

8. Circle ALL the representations below in which Ĥ0 is a diagonal matrix (fixed n).

(a) the coupled representation

(b) the uncoupled representation

(c) any arbitrary complete orthonormal basis constructed with linear combinations of states in the coupled
representation with the same n.

(d) any arbitrary complete orthonormal basis constructed with linear combinations of states in the uncou-
pled representation with the same n.

(e) Neither the coupled nor the uncoupled representation

The entire infinite dimensional unperturbed Hamiltonian Ĥ0 is diagonal if eigenstates of Ĥ0 are chosen as
basis states. In each degenerate subspace of Ĥ0 (fixed n), the Ĥ0 matrix is a constant (−13.6 eV

n2 ) multiplied

by the identity matrix of dimension 2n2. For example, the Ĥ0 matrix in the degenerate subspace for n = 2
is shown below when the basis states are eigenstates of Ĥ0.

Ĥ0 =



−13.6eV
4 0 0 0 0 0 0 0

0 −13.6eV
4 0 0 0 0 0 0

0 0 −13.6eV
4 0 0 0 0 0

0 0 0 −13.6eV
4 0 0 0 0

0 0 0 0 −13.6eV
4 0 0 0

0 0 0 0 0 −13.6eV
4 0 0

0 0 0 0 0 0 −13.6eV
4 0

0 0 0 0 0 0 0 −13.6eV
4


(3)

= −13.6eV

4



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(4)

9. (a) For the Ĥ0 matrix given above for n = 2, can you tell whether the coupled representation or the
uncoupled representation is chosen as the basis? Explain why you can or cannot tell.

(b) Can you tell whether the coupled or uncoupled representation was chosen as the basis if you are given
the complete infinite dimensional, diagonal matrix for Ĥ0? Explain your answer.
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• In this tutorial, the radial part of the basis states will always chosen to be Rnl(r) for the hydrogen atom
so the choice of a “good” basis focuses on choosing the angular basis appropriately.

Consider the following conversation regarding whether the unperturbed Hamiltonian Ĥ0 is diagonal if the
coupled or the uncoupled representation is chosen as the angular basis for a given n.
Student 1: The unperturbed Hamiltonian Ĥ0 in equation (2) is only diagonal when the uncoupled repre-
sentation is chosen as the basis.
Student 2: I disagree that the uncoupled representation is the only basis in which Ĥ0 is diagonal. Ĥ0 will
also be diagonal when the coupled representation is chosen as the basis.
Student 3: I agree with Student 2. Angular basis states in both the coupled and the uncoupled representa-
tions are eigenstates of Ĥ0 since Ĥ0 is spherically symmetric with unperturbed energy only dependent on n.
Furthermore, for a fixed n, any arbitrary complete orthogonal basis constructed using linear combinations of
a complete set of the coupled or uncoupled states can also be chosen as the angular part of the eigenstates
of Ĥ0 since the unperturbed energy only depends on n as En = −13.6 eV

n2 .

Student 2: Yes. And since Ĥ0 is a diagonal matrix in both the coupled and the uncoupled representations,
there is no way to determine whether the basis states were chosen in the coupled or the uncoupled represen-
tation in equation (3).
Student 3: The unperturbed Hamiltonian Ĥ0 is identical in both the coupled and uncoupled representa-
tions. In fact, Ĥ0 is identical so long as, for a fixed n, we choose any arbitrary complete orthonormal basis
constructed with linear combinations of states in the coupled or uncoupled representation.

Explain why you agree or disagree with each student.

In one to two sentences, summarize what you have learned about the unperturbed Hamiltonian Ĥ0 for the
hydrogen atom in equation (2) (pertaining to whether Ĥ0 is diagonal if the coupled representation, the
uncoupled representation, or any complete arbitrary orthonormal basis found with linear combinations of a
complete set of the coupled or uncoupled states with the same principal quantum number n is chosen as the
angular basis).
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** Check your answers to questions 4-9: **

4. n, l,ml, s,ms or n, l, s, j,mj (If you omitted s, that is OK because s is fixed to s = 1
2 for the electron

in the hydrogen atom.)
5. En = −13.6eV

n2

6. Yes, there is degeneracy in the energy spectrum of the hydrogen atom.

7. 2

n−1∑
l=0

(2l+ 1) = 2n2. (Since for each n, there are (2l+ 1) values of ml and the factor of 2 corresponds

to the spin degeneracy.)
8. Ĥ0 will be diagonal if the coupled represenation, the uncoupled representation, or any complete
arbitrary orthonormal basis constructed with linear combinations of states in the coupled representation
or the uncoupled representation with the same principal quantum number n is chosen as the angular
basis.
9. (a) and (b). The Ĥ0 matrix will be a diagonal matrix with the unperturbed energy En along
the diagonal if the coupled representation, the uncoupled representation, or any complete arbitrary
orthonormal basis constructed with linear combinations of states in the coupled representation or the
uncoupled representation with the same principal quantum number n is chosen as the angular basis.
There is no way to distinguish between these bases if we are only given the Ĥ0 matrix since the basis
states are eigenstates of Ĥ0 in all these cases (so long as we do not take linear superpositions of states
with different n).

If any of your answers do not match the checkpoint answers for questions 4-9, go back and reconcile any
difference you may have.
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Summary: The Unperturbed Hamiltonian of the Hydrogen Atom

• For a given unperturbed energy En = −13.6eV
n2 , there is a 2n2-fold degeneracy, i.e., there are 2n2 different states with the same energy En.

– For n = 2, there is an 8-fold degeneracy, so 8 distinctly different states have the same energy −13.6 eV
4 .

• For a fixed n, the unperturbed Hamiltonian Ĥ0 is diagonal if the coupled representation, the uncoupled representation, or any complete arbitrary
orthonormal basis found with linear combinations of the coupled or uncoupled states with the same principal quantum number n is chosen as the
angular basis.

Are States in the Are States in the Is Any Complete Set of
Unperturbed Uncoupled Uncoupled Coupled Coupled Arbitrary Linear Combinations of Unperturbed
Hamiltonian Representation Representation Representation Representation Orthonormal States (with the same n) Energy

(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

an Eigenstate of Ĥ0? an Eigenstate of Ĥ0? Representation the Angular Part

of an Eigenstate of Ĥ0

Ĥ0 Diagonal Yes Diagonal Yes Yes En = −13.6eV
n2

9



7 Perturbation Theory for the Hydrogen Atom in an External Magnetic Field

• For the hydrogen atom placed in an external magnetic field, we will treat the relativistic correction term
Ĥ ′r, the spin-orbit coupling term Ĥ ′SO, and the Zeeman term Ĥ ′Z in the Hamiltonian as perturbations

on Ĥ0 to find the corrections to the unperturbed energies (the Bohr energies En = −13.6eV
n2 ).

• In order to find the corrections to the energies using perturbation theory when the unperturbed Hamil-
tonian Ĥ0 possesses degeneracy, we must ensure that the basis states are “good” states.

– Definition: For a given Ĥ0 and Ĥ ′, a “good” basis consists of a complete set of eigenstates of
Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0 (Ĥ0 is diagonal everywhere).

• In order to determine if we have a “good” basis in each case, we can start by determining the matrix
elements of the relativistic perturbation Ĥ ′r, the spin-orbit perturbation Ĥ ′SO, and the Zeeman pertur-

bation Ĥ ′Z in the coupled and uncoupled representations and check whether the off-diagonal matrix

elements of Ĥ ′ are zero in each degenerate subspace of Ĥ0.

• Given a perturbation Ĥ ′, if there are non-zero off-diagonal matrix elements of Ĥ ′ in a degenerate

subspace of Ĥ0 in the coupled and the uncoupled representations, neither is a “good” basis for the

given Ĥ0 and Ĥ ′. In that case, we must diagonalize the Ĥ ′ matrix (in the initial basis) in each degenerate
subspace of the Ĥ0 matrix explicitly to find a “good” basis.
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7.1 Relativistic Correction

Before discussing the relativistic correction perturbation term, let’s begin by considering a perturbation
Ĥ ′ = ζδ(r) that is spherically symmetric (in which ζ is a constant such that Ĥ ′ has the dimensions of
energy). Recall that the unperturbed Hamiltonian Ĥ0 for the hydrogen atom is also spherically symmetric
(with energy only depending on n) and keep this in mind as you consider the following conversation. Also,
note that, in general, energies for spherically symmetric potential energies depend on both quantum numbers
n and l.

Consider the following conversation regarding whether for the perturbation Ĥ ′ = ζδ(r), the coupled represen-
tation, the uncoupled representation, or both form a “good” angular basis to find the first order corrections
to the unperturbed energies of the hydrogen atom for a fixed n.
Student 1: When a perturbation Ĥ ′ = ζδ(r) acts on a hydrogen atom with the unperturbed Hamiltonian

Ĥ0 = − h̄2

2m∇
2 − e2

4πε0

(
1
r

)
, to find the corrections to the energies, neither the coupled nor the uncoupled

representations form a “good” angular basis.
Student 2: I agree. Since Ĥ ′ only depends on r, it means that n and l are the only “good” quantum
numbers. Thus neither {j,mj} nor {ml,ms} is a set of “good” quantum numbers. Neither the coupled nor
the uncoupled representation forms a “good” angular basis.
Student 3: No, I disagree with both Student 1 and Student 2. Because Ĥ ′ is spherically symmetric, its
off-diagonal matrix elements will be zero in each degenerate subspace of Ĥ0 in both the coupled and the
uncoupled representations, whichever is chosen as the angular basis for a fixed n. Ĥ ′ will be diagonal whether
we use the uncoupled representation |ml,ms〉 or the coupled representation |j,mj〉 as the basis. This implies
that the coupled or uncoupled representation each forms a “good” angular basis to find the corrections to
the energies.
Student 4: I agree with Student 3. The reason the off-diagonal matrix elements of Ĥ ′ are zero in the
degenerate subspace of Ĥ0 is that for each n, the matrix elements 〈ψ′|Ĥ ′|ψ〉 can be written as the prod-
uct of the radial part and the angular part. If we choose the coupled representation, the angular part
is 〈l, j, mj |l′, j′, m′j〉 = δl,l′δj,j′δmj ,m′

j
. If we choose the uncoupled representation, the angular part is

〈l, ml, ms|l′, m′l, m′s〉 = δl,l′δml,m
′
l
δms,m′

s
. Either way, the Kronecker delta implies that all off-diagonal

matrix elements are zero for a fixed n. Thus, both the coupled and the uncoupled representation, or any
arbitrary complete orthonormal basis found with linear combinations of a complete set of the coupled or
uncoupled states for the same n and l form a “good” angular basis because Ĥ0 is diagonal and Ĥ ′ = ζδ(r)
is diagonal in the degenerate subspace of Ĥ0.

Explain why you agree or disagree with each student.

10. Is the relativistic correction term Ĥ ′r = − p̂4

8m3c2
diagonal if the coupled representation, the uncoupled repre-

sentation, or any arbitrary complete orthonormal basis constructed with linear combinations of a complete
set of the coupled or uncoupled states with the same n and l is chosen as the angular basis? Explain. [Hint:

Ĥ ′r = − p̂4

8m3c2
, Ĥ0, and Ĥ ′ = ζδ(r) are all spherically symmetric and energies for spherically symmetric

potential energies only depend on the quantum numbers n and l.]
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7.2 Spin-Orbit Interaction

• The spin orbit coupling term in the Hamiltonian, Ĥ ′SO, is proportional to ~L · ~S. We can write ~L · ~S as
~L · ~S = 1

2(Ĵ2− Ŝ2− L̂2) or ~L · ~S = 1
2(L̂+Ŝ−+ L̂−Ŝ+)+ L̂zŜz. The expression that will be most beneficial

in determining the matrix elements of Ĥ ′SO will depend on whether the coupled representation or the
uncoupled representation is chosen as the basis.

11. If the coupled representation is chosen as the basis, which expression for ~L · ~S is more useful when evaluating
the matrix elements of ~L · ~S? Explain.

12. If the uncoupled representation is chosen as the basis, which expression for ~L · ~S is more useful when evalu-
ating the matrix elements of ~L · ~S? Explain.

• Let’s evaluate the matrix elements of ~L · ~S in the coupled and the uncoupled representations in order
to determine whether ~L · ~S is diagonal in each basis. This will help us later in determining a “good”
angular basis when the perturbation is Ĥ ′SO (which is proportional to ~L · ~S).

7.2.1 Coupled Representation

The spin-orbit coupling term in the Hamiltonian, Ĥ ′SO, is proportional to ~L · ~S. The expression ~L · ~S =
1
2(Ĵ2 − Ŝ2 − L̂2) is most useful when expressing the matrix elements of Ĥ ′SO in the coupled representation.

13. Evaluate the following matrix elements useful for the perturbation Ĥ ′SO, in which the states are written in
the coupled representation |n l s j mj〉.

(a) 〈2 1 1
2

3
2

1
2 |

1
2(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2

1
2〉

(b) 〈2 1 1
2

3
2

1
2 |

1
2(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2 −

1
2〉

(c) 〈2 1 1
2

3
2

3
2 |

1
2(Ĵ2 − Ŝ2 − L̂2)|2 1 1

2
3
2 −

1
2〉

14. Is Ĥ ′SO diagonal in each degenerate subspace of Ĥ0 (for a fixed n) if the coupled representation is chosen as
the basis? [Hint: The answers to the preceding question may be helpful.]
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7.2.2 Uncoupled Representation

The spin-orbit coupling term in the Hamiltonian, Ĥ ′SO, is proportional to ~L · ~S. The expression ~L · ~S =
1
2(L̂+Ŝ− + L̂−Ŝ+) + ŜzL̂z is most useful when expressing the matrix elements of Ĥ ′SO in the uncoupled
representation.

15. Evaluate the following expressions. (The states are written in the uncoupled representation |n l s ml ms〉).

(a) L̂−|2 1 1
2 − 1 1

2〉

(b) L̂+|2 1 1
2 − 1 − 1

2〉

(c) Ŝ−|2 1 1
2 − 1 1

2〉

(d) Ŝ+|2 1 1
2 − 1 1

2〉

16. Evaluate the following matrix elements, in which the states are written in the uncoupled representation
|n l s ml ms〉.

(a) 〈2 1 1
2 − 1 1

2 |(L̂+Ŝ− + L̂−Ŝ+)|2 1 1
2 − 1 1

2〉

(b) 〈2 1 1
2 0 − 1

2 |(L̂+Ŝ− + L̂−Ŝ+)|2 1 1
2 − 1 1

2〉
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17. Now let’s evaluate the following matrix elements useful for the perturbation Ĥ ′SO. We use the fact that ~L · ~S
is proportional to 1

2(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz in the uncoupled representation |n l s ml ms〉.

(a) 〈2 1 1
2 − 1 1

2 |
1
2(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz|2 1 1

2 − 1 1
2〉

(b) 〈2 1 1
2 0 − 1

2 |
1
2(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz|2 1 1

2 − 1 1
2〉

18. Is Ĥ ′SO diagonal in each degenerate subspace of Ĥ0 (for a fixed n) if the uncoupled representation is chosen
as the basis? [Hint: The answers to the preceding questions may be helpful.]
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Consider the following conversation regarding whether the Ĥ ′SO matrix is a diagonal matrix if, for a fixed n,
any arbitrary complete orthonormal basis found with linear combinations of a complete set of the coupled
or uncoupled states is chosen as the basis.
Student 1: Since Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the coupled representation, any

linear combinations of states in the coupled representation must also be eigenstates of Ĥ ′SO. Thus, Ĥ ′SO
is diagonal in the coupled representation in each degenerate subspace of Ĥ0 and also when any arbitrary
complete orthonormal basis is constructed with linear combinations of a complete set of the coupled states.
Student 2: I disagree with Student 1. For example, in general, a linear combination of energy eigenstates is
NOT an energy eigenstate. For example, if |ψ1〉 and |ψ2〉 are eigenstates of the operator ĤSO with eigenvalues
E1 and E2, respectively, then

Ĥ|ψ1〉 = E1|ψ1〉
Ĥ|ψ2〉 = E2|ψ2〉.

The linear combination of |ψ1〉 and |ψ2〉 gives

Ĥ(|ψ1〉+ ψ2〉) = E1|ψ1〉+ E2|ψ2〉 6= E(|ψ1〉+ |ψ2〉).

Thus Ĥ(|ψ1〉+ ψ2〉) 6= E(|ψ1〉+ ψ2〉) unless E1 = E2 = E.
Student 3: I agree with Student 2. If we consider Ĥ ′SO, which is proportional to 1

2(Ĵ2 − Ŝ2 − L̂2), then

Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the coupled representation |n l s j mj〉. However,

in general, Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 if linear combinations of states in the
coupled representation, even with a fixed n, is chosen as the basis. For example, if we consider the states
|ψ1〉 = |2 1 1

2
3
2

3
2〉 and |ψ2〉 = |2 0 1

2
1
2

1
2〉

1
2(Ĵ2 − Ŝ2 − L̂2)|ψ1〉 = 1

2(Ĵ2 − Ŝ2 − L̂2)
∣∣2 1 1

2
3
2

3
2

〉
= h̄2

2

∣∣2 1 1
2

3
2

3
2

〉
1
2(Ĵ2 − Ŝ2 − L̂2)|ψ2〉 = 1

2(Ĵ2 − Ŝ2 − L̂2)
∣∣2 0 1

2
1
2

1
2

〉
= 0

∣∣2 1 1
2

3
2

3
2

〉
But the linear combination of |ψ1〉 and |ψ2〉, both in the n = 2 subspace, is not an eigenstate.

1
2(Ĵ2 − Ŝ2 − L̂2)(|ψ1〉+ |ψ2〉) = 1

2(Ĵ2 − Ŝ2 − L̂2)(
∣∣2 1 1

2
3
2

3
2

〉
+
∣∣2 0 1

2
1
2

1
2

〉
) = h̄2

2

∣∣2 1 1
2

3
2

3
2

〉
= h̄2

2 |ψ1〉

6= Constant(|ψ1〉+ |ψ2〉)

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether the Ĥ ′SO is diagonal in each degenerate subspace of

Ĥ0, for a fixed n, when any arbitrary complete orthonormal basis found with linear combinations of the
coupled or uncoupled states is chosen as the angular basis.
Student 1: For a fixed n, the spin-orbit interaction term Ĥ ′SO is diagonal if the coupled representation

is chosen as the basis. However, Ĥ ′SO is not diagonal in each degenerate subspace of Ĥ0 if the uncoupled
representation or any arbitrary complete orthonormal basis found with linear combinations of the coupled
or uncoupled states is chosen as the basis.
Student 2: I disagree. Since Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 in the coupled repre-

sentation, then Ĥ ′SO must also be diagonal in each degenerate subspace of Ĥ0 if any arbitrary complete
orthonormal basis constructed with linear combinations of the coupled states is chosen as the basis.
Student 3: I disagree with Student 2. For example, the states in the uncoupled representation can be
constructed with linear combinations of states in the coupled representation. Therefore, if Ĥ ′SO were to be

diagonal in each degenerate subspace of Ĥ0 when any arbitrary complete orthonormal basis constructed
with linear combinations of the coupled states is chosen as the basis, then Ĥ ′SO would also be diagonal if the

uncoupled representation were chosen as the basis. However, this is not the case because Ĥ ′SO is not diagonal

in each degenerate subspace of Ĥ0 in the uncoupled representation. But, for a fixed n, Ĥ ′SO is diagonal in
the coupled representation.
Student 1: I agree with Student 3. Also, if a matrix were diagonal if any arbitrary complete orthonormal
basis constructed with linear combinations of the coupled states is chosen as the angular basis, then that
matrix must also be diagonal when any complete orthogonal angular basis is chosen. Therefore, the matrix
must also be diagonal if any arbitrary complete orthonormal basis constructed with linear combinations of
the uncoupled states is chosen as the basis.

Explain why you agree or disagree with each student.

Student 1 and Student 3 are correct in the preceding conversation.

In one to two sentences, summarize what you have learned about the spin-orbit interaction term Ĥ ′SO, which

is proportional to ~L · ~S for the hydrogen atom (pertaining to whether Ĥ ′SO is diagonal in each degenerate

subspace of Ĥ0, for a fixed n, if the coupled representation, the uncoupled representation, or any arbitrary
complete orthonormal basis found with linear combinations of the coupled or uncoupled states with the same
principal quantum number n is chosen as the basis).
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SUMMARY: Spin-orbit Interaction (Ĥ ′SO proportional to ~L · ~S)

• For a given n (in each degenerate subspace of Ĥ0), the spin-orbit interaction term in the Hamiltonian, Ĥ ′SO, is diagonal if the coupled repre-
sentation is chosen as the angular basis.

• For a given n (in each degenerate subspace of Ĥ0), the spin-orbit interaction term in the Hamiltonian, Ĥ ′SO, is NOT diagonal if the uncoupled
representation is chosen as the basis. (You must have found a non-zero off-diagonal matrix element in question 17.)

Are States in the Are States in the Is Any Arbitrary Linear
Hamiltonian Uncoupled Uncoupled Coupled Coupled Combination of Orthonormal

Ĥ Representation Representation Representation Representation States (with the same n and l)
(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

Eigenstates of Ĥ0? Eigenstates of Ĥ0? Representation the Angular Part

of an Eigenstate of Ĥ

Ĥ0 Diagonal Yes Diagonal Yes Yes

Ĥ ′r Diagonal Yes Diagonal Yes Yes

Ĥ ′SO Not Diagonal No Diagonal Yes No
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** Check your answers to questions 10-18: **

10. For a given n, Ĥ ′r in each degenerate subspace of Ĥ0 will be diagonal if the coupled representation, the
uncoupled representation, or any arbitrary complete orthonormal basis found with linear combinations
of the coupled or uncoupled states with the same n and l is chosen as the angular basis.

11. If the coupled representation is chosen as the angular basis, ~L · ~S = 1
2(Ĵ2 − Ŝ2 − L̂2) should be used

since |j, mj〉 is an eigenstate of Ĵ2, Ŝ2, and L̂2

12. If the uncoupled representation is chosen as the basis, ~L · ~S = 1
2(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz should be

used since |ml, ms〉 is an eigenstate of L̂z and Ŝz and the raising and lowering operators L̂± and Ŝ± act
on the uncoupled states |ml, ms〉.
13a. 1

2 h̄
2

13b. 0
13c. 0
14. For a fixed n, Ĥ ′SO is diagonal if the coupled representation is chosen as the basis. If the basis states

are chosen in the coupled representation (|l, j, mj〉) in the order |ψ1〉 = |1, 3
2 ,

3
2〉, |ψ2〉 = |1, 3

2 ,
1
2〉,

|ψ3〉 = |1, 3
2 , −

1
2〉, |ψ4〉 = |1, 3

2 , −
3
2〉, |ψ5〉 = |1, 1

2 ,
1
2〉, |ψ6〉 = |1, 1

2 , −
1
2〉, |ψ7〉 = |0, 1

2 ,
1
2〉 and

|ψ8〉 = |0, 1
2 , −

1
2〉, the Ĥ ′SO matrix for n = 2 is

Ĥ ′
SO = A

1

r3
(~L · ~S) =

2E2
2

3mc2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


15a. 0

15b.
√

2h̄|2 1 1
2 0 − 1

2〉
15c. h̄|2 1 1

2 − 1 − 1
2〉

15d. 0
16a. 0
16b.

√
2h̄2

17a. −1
2 h̄

2

17b.
√

2
2 h̄

2

18. For a fixed n, Ĥ ′SO is not diagonal if the uncoupled representation is chosen as the basis. If the basis

states are chosen in the uncoupled representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2〉, |ψ2〉 =

|0, 0, −1
2〉, |ψ3〉 = |1, 1, 1

2〉, |ψ4〉 = |1, 1, −1
2〉, |ψ5〉 = |1, 0, 1

2〉, |ψ6〉 = |1, 0, −1
2〉, |ψ7〉 = |1, −1, 1

2〉,
and |ψ8〉 = |1, −1, −1

2〉, the Ĥ ′SO matrix is

Ĥ ′
SO = A

1

r3
(~L · ~S) =

α4mc2

96



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 −1
√

2 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0 0 0
√

2 0

0 0 0 0 0
√

2 −1 0
0 0 0 0 0 0 0 1



If any of your answers do not match the checkpoint answers to questions 10-18, go back and reconcile any
difference you may have.1

1For a fixed n, Ĥ ′
SO is also diagonal if an orthonormal basis includes certain special linear combinations of states in the coupled

representation corresponding to each degenerate subspace of Ĥ ′
SO. However, Ĥ ′

SO is NOT diagonal if any arbitrary complete
orthonormal basis constructed with linear combinations of states in the coupled representation with the same n is chosen as the angular
basis. We will not focus on these issues in this tutorial since our goal is to find one “good” basis for perturbation theory.
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7.3 Zeeman Effect

If the external magnetic field is chosen to be a uniform, time independent field along the ẑ direction given
by ~B = Bextẑ, the Zeeman term in the Hamiltonian is

Ĥ ′Z =
µBBext
h̄

(L̂z + 2Ŝz). (5)

Consider the following conversation regarding simplifying the hydrogen atom basis states in the coupled or
uncoupled representation.
Student 1: When we write states in the coupled or uncoupled representation, we must write all the quantum
numbers that represent the state |n l s j mj〉 or |n l s ml ms〉.
Student 2: If we are dealing with an operator acting on the states that only depends on a subset of all
the quantum numbers, we can express the states with only the relevant quantum numbers and suppress the
other quantum numbers for convenience. Consider Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz), where the relevant quantum
numbers are ml and ms if n and s are fixed. We can abbreviate the state |n l s ml ms〉 as |l, ml, ms〉.
Student 3: I agree with Student 2. Additionally, if we know we are restricted to a particular set of quantum
numbers or can determine the quantum numbers from the context, we can suppress those quantum numbers
without loss of generality. For example, if we are considering an electron in the n = 2 degenerate subspace of
Ĥ0, the state in the coupled representation |n l s j mj〉 = |2 1 1

2
3
2

3
2〉 can be written as |l, j, mj〉 = |1, 3

2 ,
3
2〉

since s = 1
2 .

Explain why you agree or disagree with each student.

7.3.1 Uncoupled Representation

19. Evaluate the following matrix elements of Ĥ ′Z in which the states are written in the uncoupled representation
|l, ml, ms〉.

(a) 〈0, 0, 1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|0, 0, 1
2〉

(b) 〈0, 0, 1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|0, 0, −1
2〉

(c) 〈1, 1, 1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|1, 1, 1
2〉

(d) 〈1, 1, 1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|1, −1, −1
2〉

19



20. Is the Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz) matrix a diagonal matrix if the uncoupled representation is chosen as the
basis? [Hint: The answers to the preceding question may be helpful.]

7.3.2 Coupled Representation

In the following table, the angular states for n = 2 are listed in the coupled representation (left), and each
state in the coupled representation is given in terms of a linear combination of states in the uncoupled
representation (right) using the Clebsch-Gordon table.

Coupled Representation Uncoupled Representation

|l, j, mj〉 |l, ml〉|s, ms〉

|ψ1〉
∣∣∣∣0, 1

2
,

1

2

〉
|0, 0〉

∣∣∣∣12 , 1

2

〉

|ψ2〉
∣∣∣∣0, 1

2
, −1

2

〉
|0, 0〉

∣∣∣∣12 , −1

2

〉

|ψ3〉
∣∣∣∣1, 3

2
,

3

2

〉
|1, 1〉

∣∣∣∣12 , 1

2

〉

|ψ4〉
∣∣∣∣1, 3

2
, −3

2

〉
|1, −1〉

∣∣∣∣12 , −1

2

〉

|ψ5〉
∣∣∣∣1, 3

2
,

1

2

〉 √
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 1〉

∣∣∣∣12 , −1

2

〉

|ψ6〉
∣∣∣∣1, 1

2
,

1

2

〉
−
√

1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 1〉

∣∣∣∣12 , −1

2

〉

|ψ7〉
∣∣∣∣1, 3

2
, −1

2

〉 √
1

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , −1

2

〉

|ψ8〉
∣∣∣∣1, 1

2
, −1

2

〉
−
√

2

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 0〉

∣∣∣∣12 , −1

2

〉
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21. Determine the following matrix elements given in the coupled representation (|l, j, mj〉). If you need to first
express the states in the uncoupled representation (|l, ml〉|s, ms〉) you can use the preceding table.

(a) 〈ψ3|µBBext

h̄ (L̂z + 2Ŝz)|ψ3〉 = 〈1, 3
2 ,

3
2 |
µBBext

h̄ (L̂z + 2Ŝz)|1, 3
2 ,

3
2〉

(b) 〈ψ5|µBBext

h̄ (L̂z + 2Ŝz)|ψ6〉 = 〈1, 3
2 ,

1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|1, 1
2 ,

1
2〉

(c) 〈ψ5|µBBext

h̄ (L̂z + 2Ŝz)|ψ1〉 = 〈1, 3
2 ,

1
2 |
µBBext

h̄ (L̂z + 2Ŝz)|0, 1
2 ,

1
2〉

22. Is the Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz) matrix a diagonal matrix if the coupled representation is chosen as the basis?
[Hint: The answers to the preceding question may be helpful.]
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Consider the following conversation regarding whether the Ĥ ′Z matrix is a diagonal matrix if any arbitrary
complete orthonormal basis found with linear combinations of the coupled or uncoupled states is chosen as
the basis.
Student 1: Since states in the uncoupled representation are eigenstates of Ĥ ′Z , any linear combination

of states in the uncoupled representation must also be eigenstates of Ĥ ′Z . Thus, Ĥ ′Z is diagonal in the
uncoupled representation and also when any arbitrary complete orthonormal basis is constructed with a
linear combination of a complete set of the uncoupled states.
Student 2: I disagree with Student 1. If we consider Ĥ ′Z which is proportional to (L̂z + 2Ŝz), then states in

the uncoupled representation |n l s ml ms〉 are eigenstates of Ĥ ′Z . However, in general, linear combinations

of states in the uncoupled representation are NOT eigenstates of Ĥ ′Z . For example, if we consider the states
|ψ1〉 = |2 0 1

2 01
2〉 and |ψ2〉 = |2 0 1

2 0 − 1
2〉

(L̂z + 2Ŝz)|ψ1〉 = (L̂z + 2Ŝz)
∣∣2 01

2 0 1
2

〉
= h̄

∣∣2 01
2 0 1

2

〉
(L̂z + 2Ŝz)|ψ2〉 = (L̂z + 2Ŝz)

∣∣2 01
2 0 − 1

2

〉
= −h̄

∣∣2 01
2 0 − 1

2

〉
But the linear combination of |ψ1〉 and |ψ2〉 is not an eigenstate.

(L̂z + 2Ŝz)(|ψ1〉+ |ψ2〉) = (L̂z + 2Ŝz)
(∣∣2 01

2 01
2

〉
+
∣∣2 0 1

2 0 − 1
2

〉)
= h̄

[∣∣2 01
2 0 1

2

〉
−
∣∣2 01

2 0 − 1
2

〉]
= h̄ [|ψ1〉 − |ψ2〉]

6= Constant(|ψ1〉+ |ψ2〉)

Explain why you agree or disagree with each student.
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Consider the following conversation regarding whether the Ĥ ′Z matrix is a diagonal matrix if any arbitrary
complete orthonormal basis constructed with linear combinations of a complete set of the coupled or uncou-
pled states is chosen as the angular basis.
Student 1: The Zeeman term Ĥ ′Z is diagonal if the uncoupled representation is chosen as the basis. However,

Ĥ ′Z is not diagonal if the coupled representation or any arbitrary complete orthonormal basis constructed
with linear combinations of the coupled or uncoupled states is chosen as the angular basis.
Student 2: I disagree. Since Ĥ ′Z is diagonal in the uncoupled representation, then Ĥ ′Z must also be diagonal
if any arbitrary complete orthonormal basis constructed with linear combinations of the uncoupled states is
chosen as the basis.
Student 3: I disagree with Student 2. For example, the states in the coupled representation can be con-
structed with linear combinations of states in the uncoupled representation. Therefore, if Ĥ ′Z were to be
diagonal when any arbitrary complete orthonormal basis constructed with linear combinations of the uncou-
pled states is chosen as the basis, then Ĥ ′Z would also be diagonal if the coupled representation were chosen

as the basis. However, this is not the case because Ĥ ′Z is not diagonal in the coupled representation. But

Ĥ ′Z is diagonal in the uncoupled representation.
Student 1: I agree with Student 3. Also, if a matrix is diagonal if any arbitrary complete orthonormal
basis constructed with linear combinations of the coupled states is chosen as the basis, then that matrix
must also be diagonal when any complete orthonormal basis is chosen. Therefore, the matrix must also be
diagonal if any arbitrary orthonormal angular basis constructed with a linear combination of the uncoupled
states is chosen as the angular basis.

Explain why you agree or disagree with each student.

In one to two sentences, summarize what you have learned about the Zeeman term Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz)

for the hydrogen atom (pertaining to whether Ĥ ′Z is diagonal if the coupled representation, the uncoupled
representation, or any arbitrary complete orthonormal basis constructed with linear combinations of a com-
plete set of the coupled or uncoupled states with the same principal quantum number n is chosen as the
angular basis).
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SUMMARY: Zeeman Effect

• For a given n, the Zeeman term in the Hamiltonian, Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz), is diagonal if the uncoupled representation is chosen as the
angular basis.

• For a given n, the Zeeman term in the Hamiltonian, Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz), is NOT diagonal if the coupled representation is chosen as the
angular basis. (You must have found some non-zero off-diagonal matrix elements in question 21.)

Are States in the Are States in the Is Any Arbitrary Linear
Hamiltonian Uncoupled Uncoupled Coupled Coupled Combination of Orthonormal

Ĥ Representation Representation Representation Representation States (with the same n and l)
(for a fixed n) the Angular Part of (for a fixed n) the Angular Part of in the Coupled or Uncoupled

Eigenstates of Ĥ0? Eigenstates of Ĥ0? Representation the Angular Part

of an Eigenstate of Ĥ

Ĥ0 Diagonal Yes Diagonal Yes Yes

Ĥ ′r Diagonal Yes Diagonal Yes Yes

Ĥ ′SO Not Diagonal No Diagonal Yes No

Ĥ ′Z Diagonal Yes Not Diagonal No No
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** Check your answers to questions 19-22: **

19a. µBBext
19b. 0
19c. 2µBBext
19d. 0
20. Ĥ ′Z is diagonal if the uncoupled representation is chosen as the basis. If the basis states are chosen
in the uncoupled representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1

2〉, |ψ2〉 = |0, 0, −1
2〉,

|ψ3〉 = |1, 1, 1
2〉, |ψ4〉 = |1, 1, −1

2〉, |ψ5〉 = |1, 0, 1
2〉, |ψ6〉 = |1, 0, −1

2〉, |ψ7〉 = |1, −1, 1
2〉, and

|ψ8〉 = |1, −1, −1
2〉, the Ĥ ′Z matrix is

Ĥ ′Z =
µBBext
h̄

(L̂z + 2Ŝz) = µBBext



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2


21a. 2µBBext
21b. −

√
2

3 µBBext
21c. 0
22. Ĥ ′Z is not diagonal if the coupled representation is chosen as the basis. If the basis states are chosen in
the coupled representation (|l, j, mj〉) in the order |ψ1〉 = |1, 3

2 ,
3
2〉, |ψ2〉 = |1, 3

2 ,
1
2〉, |ψ3〉 = |1, 3

2 , −
1
2〉,

|ψ4〉 = |1, 3
2 , −

3
2〉, |ψ5〉 = |1, 1

2 ,
1
2〉, |ψ6〉 = |1, 1

2 , −
1
2〉, |ψ7〉 = |0, 1

2 ,
1
2〉 and |ψ8〉 = |0, 1

2 , −
1
2〉, the Ĥ ′Z

matrix is

Ĥ ′Z =
µBBext
h̄

(L̂z + 2Ŝz) = µBBext



2 0 0 0 0 0 0 0

0 2
3 0 0 −

√
2

3 0 0 0

0 0 −2
3 0 0 −

√
2

3 0 0
0 0 0 −2 0 0 0 0

0 −
√

2
3 0 0 1

3 0 0 0

0 0 −
√

2
3 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1



If any of your answers do not match the checkpoint answers to questions 19-22, go back and reconcile any
differences you may have.2

2Ĥ ′
Z is also diagonal if an orthonormal basis includes certain special linear combination of states in the uncoupled representation

corresponding to each degenerate subspace of Ĥ ′
Z . However, Ĥ ′

Z is NOT diagonal if any arbitrary complete orthonormal basis
constructed with linear combinations of states in the uncoupled representation with the same n is chosen as the basis. We will not
focus on these issues in this tutorial since our goal is to find one “good” basis for perturbation theory.

25



8 Choosing a “Good” Basis

To find the first order corrections to the energies of the hydrogen atom in perturbation theory, we must
first choose a “good” angular basis for the given Ĥ0 and Ĥ ′. Depending on the nature of the perturbation,
the coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis con-
structed with linear combinations of the coupled or uncoupled states can form the “good” angular basis.
Recall that the determination of a “good” basis depends on both Ĥ0 and Ĥ ′.

23. In the following questions, a perturbation Ĥ ′ acts on a hydrogen atom with the unperturbed Hamiltonian
Ĥ0 = − h̄2

2m∇
2 − e2

4πε0

(
1
r

)
. For each of the following perturbations, circle ALL of the representations that

form a “good” angular basis. Assume that for all cases, the principal quantum number is fixed to n = 2. (A
and C are constants which makes the dimensions of Ĥ ′ that of energy in each case.)

(a) Ĥ ′ = Cδ(r)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(b) Ĥ ′ = CL̂z

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(c) Ĥ ′ = CĴz

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(d) Ĥ ′ = C(L̂z + 2Ŝz)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation
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(e) Ĥ ′ = C(L̂z + Ŝz)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(f) Ĥ ′ = C(~L · ~S)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(g) Ĥ ′ = C
(

1
rn

)
i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(h) Ĥ ′ = Cp̂2

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(i) Ĥ ′ = Cp̂4

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation

(j) Ĥ ′ = C(L̂z + 2Ŝz) +A(~L · ~S)

i. Coupled representation

ii. Uncoupled representation

iii. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
coupled representation with the same l (i.e., states with different l values are not mixed),

iv. Any arbitrary complete orthonormal basis constructed with linear combinations of states in the
uncoupled representation with the same l (i.e., states with different l values are not mixed),

v. Neither coupled nor uncoupled representation
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Consider the following conversation regarding determining a “good” angular basis for the perturbations
Ĥ ′ = C(L̂z + Ŝz) and Ĥ ′ = CĴz acting on the hydrogen atom with the unperturbed Hamiltonian Ĥ0 =

− h̄2

2m∇
2 − e2

4πε0

(
1
r

)
.

Student 1: The uncoupled representation forms a “good” basis when the perturbation Ĥ ′ = C(L̂z + Ŝz)

acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 = − h̄2

2m∇
2 − e2

4πε0

(
1
r

)
.

Student 2: I agree. And the coupled representation forms a “good” basis when the perturbation Ĥ ′ = CĴz
acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 = − h̄2

2m∇
2 − e2

4πε0

(
1
r

)
.

Student 3: I agree with both Student 1 and Student 2, but both students are overlooking the fact that
Ĵz = L̂z + Ŝz. The perturbation Ĥ ′ = CĴz is identical to the perturbation Ĥ ′ = C(L̂z + Ŝz). Therefore, both
the coupled and uncoupled representations form a “good” basis for the perturbation Ĥ ′ = C(L̂z+Ŝz) = CĴz.

Explain why you agree or disagree with each student.

Consider the following statement regarding whether any arbitrary orthonormal basis constructed with linear
combinations of states in the coupled or uncoupled representation with the same principal quantum number
n forms a “good” angular basis if both the coupled and uncoupled representations form a “good” angular
basis.
Student 1: Since both the uncoupled and coupled representations form a “good” basis when the perturba-
tion is Ĥ ′ = C(L̂z+Ŝz), then any arbitrary complete orthonormal basis constructed with linear combinations
of states in the uncoupled representation with the same n must form a “good” basis. Also, any arbitrary
complete orthonormal basis constructed with linear combinations of states in the coupled representation
with the same n must form a “good” basis.

Explain why you agree or disagree with the student.
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Consider the following conversation regarding whether for the perturbation Ĥ ′ = C(L̂z + 2Ŝz) + A(~L · ~S),
the coupled representation, the uncoupled representation, both the coupled and uncoupled representations,
or neither the coupled nor uncoupled representation form a “good” angular basis to find the first order
corrections to the unperturbed energies of the hydrogen atom.
Student 1: When the perturbation Ĥ ′ = C(L̂z + 2Ŝz) +A(~L · ~S) acts on a hydrogen atom with the unper-

turbed Hamiltonian Ĥ0 = − h̄2

2m∇
2− e2

4πε0

(
1
r

)
, to find the corrections to the energies, neither the coupled nor

the uncoupled representations form a “good” angular basis.
Student 2: I disagree. Both the coupled and the uncoupled representations are “good” angular bases since
C(L̂z + 2Ŝz) is diagonal in the coupled representation and A(~L · ~S) is diagonal in the uncoupled representa-
tion.
Student 3: I agree with Student 1. Neither the coupled nor uncoupled representation form a “good” an-
gular basis to find the first order corrections to the unperturbed energies of the hydrogen atom due to the
perturbation Ĥ ′ = C(L̂z + 2Ŝz) +A(~L · ~S). However, a “good” angular basis will be made up of some special
linear combinations of states in the coupled representation that diagonalizes Ĥ ′ in each degenerate subspace
of Ĥ0. These same angular basis states could be expressed as special linear combinations of states in the
uncoupled representation.

Explain why you agree or disagree with each student.
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** Check your answers to question 23: **

23a. i, ii, iii, iv
23b. ii
23c. i, ii
23d. ii
23e. i, ii
23f. i
23g. i, ii, iii, iv
23h. i, ii, iii, iv
23i. i, ii, iii, iv
23j. v

If any of your answers do not match the checkpoint answers to question 23, go back and reconcile any
difference you may have.
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