Tutorial: Possible Wave Functions for Systems with a Single Particle Confined in One Spatial Dimension

· A “system” refers to an electron in a potential energy well, e.g., an electron in a one-dimensional infinite square well. The system is specified by a given Hamiltonian.

· Assume all systems are isolated.
· TISE and TDSE are abbreviations for the Time Independent Schrödinger Equation and Time Dependent Schrödinger Equation, respectively.

· 
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 refer to position, momentum and Hamiltonian operators, respectively. That is, the symbol ^ denotes an operator.

· The symbol 
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 in all questions denotes a sum over a complete set of states.
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 refers to a general state, 
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 refers to a stationary state wave function for the system at time t=0, where 
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· For a one-dimensional infinite square well of width a, the stationary states are
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· When answering the questions, refer to the figures below for infinite and finite square wells.
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Learning Goals: 
· You will learn about the properties of possible wavefunctions for a quantum system with a given potential energy V(x) (single particle confined in one spatial dimension)
· Wavefunction must be continuous.

· Wavefunction must be smooth (continuous in first derivative) when V(x) is finite.

· Wavefunction must go to zero at +/- infinity.

· Wavefunction must be normalizable.

· Wavefunction must satisfy the boundary condition for the system.

· You will learn to differentiate between all possible wavefunctions and stationary state wavefunctions.
· A possible wavefunction need NOT be symmetric or anti-symmetric even if the potential energy is symmetric (the symmetry of the potential energy may be reflected in the energy eigenfunctions but NOT in other possible wave functions of the system constructed by taking linear superposition of energy eigenfunctions).

· A possible wavefunction can be written as a superposition of stationary state wave functions.

· ANY linear superposition of stationary state wave functions must be a possible wavefunction if properly normalized.

· The probability density for a stationary state wave function does not change with time. However, the probability density for other possible wavefunctions which are not stationary state wave functions (but can be obtained from a linear superposition of stationary states) changes with time.
· Challenging ideas.
· A possible wave function for a finite square well need not have a non-zero tail in the classically forbidden region. One can take a linear superposition of stationary state wave functions for a finite square well to make possible wave functions that go to zero everywhere in the classically forbidden region.
· Scattering state wave function is not a possible wave function for a particle since it is not normalizable. 
· Although scattering state wave function with a given energy is not normalizable, we can construct a normalizable wave function by taking a linear superposition of these scattering state wave functions with energies localized in a narrow range (so that the wave function close to the finite square well looks “effectively” like a scattering state wave function with a given energy).
QuILT for possible wavefunctions
1. What does the Hamiltonian acting on a stationary state wave function give, i.e., 
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A. It cannot be determined without knowing the Hamiltonian explicitly.

B. It cannot be determined without knowing the energy eigenfunctions explicitly.

C. 
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 where En is the energy eigenvalue of the nth state.

D. 
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 where E is the average energy of the system.

E. None of the above.
2. An electron is confined in a one dimensional infinite square well. Is wavefunction 
[image: image17.wmf][

]

)

(

)

(

2

1

)

(

2

1

x

x

x

y

y

+

=

Y

 a possible wavefunction at time t=0? Choose the correct answer from the statements below. 
A. It is a possible wave function because it satisfies the TISE 
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 is the Hamiltonian operator.

B. It is possible even if it does not satisfy 
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C. It is not possible because it is not an energy eigenfunction but a linear superposition of energy eigenfunctions. 

D. It is a possible wave function for two electrons but not for one electron.
E. None of the above.

3. Is the graph below a possible wavefunction for an electron in a 1-D infinite square well at time t=0?
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A. It is a possible wave function.

B. It is not possible because it does not satisfy 
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 is the Hamiltonian operator.

C. It is not possible because it is neither symmetric nor anti-symmetric about the center of the well. 

D. It is not a possible wave function because it does not satisfy the boundary conditions for the system.
E. None of the above

4. Consider the following conversation between Sally and Harry.

Sally: I don’t understand the answer to question 3. The wavefunction is neither symmetric nor anti-symmetric. Why is it a possible wavefunction for a symmetric potential energy?

Harry: When the potential is symmetric, an energy eigenfunction must be symmetric or anti-symmetric. But a superposition of energy eigenfunctions is not necessarily symmetric. For example, the sum of an even function and an odd function is neither even nor odd. 
Sally: But the possible wave function must be an eigenstate of a particular operator, e.g., the Hamiltonian or position operator.

Harry: That’s not true. The possible wavefunction need not be an eigenstate of a particular operator. It can be a superposition of the eigenstates. 

Do you agree with Sally or Harry? Explain.

Simulation 1: 1-D Infinite Square Well
Answer questions (a) and (b) before running the simulation.
(a) Draw the energy eigenfunctions for the ground state 
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 for a 1D infinite square potential energy well. 

(b) Predict and sketch the shape of the wavefunction
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Double click “ejs_qm_superposition.jar” to open the simulation. You can find two windows as shown below. The first window shows the absolute value of the wavefunction. You can change the width of the infinite square well and start/stop the time evolution to observe how the wavefunction changes with time. The option “phase as color” should be selected in our tutorial. Unselecting this option would separate the wavefunction to real and imaginary parts. The second window shows the coefficients of the superposition wavefunction. You can input the coefficients of different energy eigenstates (marked by “quantum #”) to build a superposition wavefunction. “Re” is the real part and “Im” is the imaginary part of the coefficients. You can use the button “Normalize” at the bottom of second window to normalize the coefficients.
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(c) Input 1 as the coefficient for the ground state and -1 for the first excited state in the simulation coefficient box. Click “normalize” and observe the absolute value of the superposition wavefunction. Is the shape the same as your prediction in step (b)? Explain. (Note that the simulation shows the absolute value of the wavefunction.)
(d) What would be the approximate shape of the wavefunction 
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 at time t=0? Sketch your prediction below and check your prediction with the simulation by inputting the correct coefficients.

(e) Build a superposition wavefunction with three different energy eigenstates. Record your coefficients for each eigenstate and sketch the absolute value of the superposition wavefunction below.

5. Choose all of the following statements that are correct about a possible wavefunction
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 for an infinite square well at time t=0.
(I) It satisfies the boundary conditions of the infinite square well, i.e., 
[image: image31.wmf]0

)

(

,

0

)

0

(

=

Y

=

Y

a

.

(II) It is a continuous function.

(III) It has a continuous first derivative (slope) at all points except at the well boundaries.

(IV) It is normalizable because it is zero outside the well everywhere beyond x=0 and x=a. 

A. (I) and (II) only

B. (II) and (III) only

C. (I), (II) and (III) only

D. (I), (III) and (IV) only

E. All of the above.

6. Choose all of the following statements that are correct about the wave function below for an electron interacting with an infinite square well of width a between x=0 and x=a. 
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(I) It is a possible wave function because it is a continuous, smooth and normalizable function that satisfies the boundary conditions.

(II) It is a possible wave function, and can be obtained by a superposition of energy eigenfunctions according to Fourier series analysis.

(III) It is not a possible wave function because it is not symmetric about the center of the well.
A. (I) only

B. (II) only

C. (III) only

D. (I) and (II) only

E. None of the above.

7. Choose all of the following statements that are correct about the wave function below for an electron at given time t=0 interacting with an infinite square well of width a between x=0 and x=a. 
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(I) It is a possible wave function because it is a continuous function whose first derivative is also continuous.

(II) It is not a possible wave function because it does not go to zero at the boundaries of the well; there is a finite probability of finding the electron outside the well.

(III) It is not a possible wave function because it is not an energy eigenfunction.

A. (I) only

B. (II) only

C. (III) only

D. (II) and (III) only

E. None of the above.

8. Choose all of the following statements that are correct about the wave function 
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 at time t=0 which is a superposition of the ground state and first excited wave functions for an electron interacting with a finite square well.

(I) It is a possible wavefunction.
(II) It satisfies the TISE 
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(III) The wavefunction becomes 
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 at time t where 
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 is the average energy of the system.
A. (I) only

B. (II) only

C. (III) only

D. (I) and (II) only
E. All of the above
9. Consider the following conversation between Kate and Carol:

Kate: I don’t understand. How come 
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 at t=0 is a possible wave function but doesn’t satisfy the TDSE or the TISE?

Carol: It does not satisfy the TISE because it is not a stationary state wave function; it is a superposition of stationary state wave functions. It does not satisfy the TDSE because it is only specified at time t=0. If you write 
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Kate: What is 
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Carol: It is the wave function given at time t. 
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Do you agree with Carol? Explain.

10. Substitute 
[image: image46.wmf][

]

h

h

/

2

/

1

2

1

)

(

)

(

2

1

)

,

(

t

iE

t

iE

e

x

e

x

t

x

-

-

+

=

Y

y

y

 into the left hand side and the right hand side of the TDSE 
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 and show that the TDSE is satisfied.

Simulation 2: Time evolution of states in 1-D infinite square well
Use the same simulation program as in “Simulation 1” to answer the following questions.

(a) Predict and sketch the shape of the absolute value of the wavefunction 
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 at time t=0. Check your prediction with the simulation. 
(b) When the initial wave function of an electron in a 1-D infinite square well is 
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, would the shape of the wavefunction and probability density change with time? Explain by writing down the wavefunction 
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(c) Check your prediction in (b) with the simulation by starting the time evolution. Observe the simulation result and sketch the absolute value of the wavefunction at time t=2 units. Is the shape of the wavefunction same as at t=0?

(d) If the initial state at t=0 is 
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(e) Set the initial state in the simulation to be purely 
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. Check your prediction in (d) by observing the time evolution result and sketching the absolute value of wavefunction at time t=0 and t=2 unit.

11. An electron is in a one dimensional finite square well. The normalization of the wave function implies that

(I) The wave function should go to zero both as 
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[image: image54.wmf]-¥

®

x

.

(II) The probability of finding the electron anywhere in space should add up to 1.

(III) The wave function must be zero in regions where the energy of the system E is less than the potential energy V(x).

Choose all of the above statements that are correct.

A. (I) only

B. (II) only

C. (III) only

D. (I) and (II) only

E. All of the above
12. After normalizing the wave function, which one of the following equations is satisfied?

A. 
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D. 
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E. None of the above.
13. An electron is interacting with a one dimensional finite square well with a wave function 
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 at t = 0. Choose all of the following statements that are correct:

(I) 
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 must be symmetric about the center of the well.

(II) 
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 must reflect the symmetry of the potential energy well. 

(III) Any single-valued, smooth normalizable function is a possible wavefunction 
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A. (I) only

B. (II) only

C. (III) only

D. (I) and (III) only

E. (II) and (III) only

14. Choose all of the following statements that are correct about the wave function below for an electron interacting with a finite square well of width a (between x=0 and x=a) at time t=0: 
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(I) It is a possible wave function because it is the first excited state.

(II) It is a possible wave function because it is anti-symmetric about the center of the well.

(III) It is not a possible wave function because it goes to zero at the boundaries of the well.

(IV) It is not possible because its derivative is not continuous at the boundaries of the well.

A. (I) only

B. (III) only

C. (IV) only

D. (I) and (II) only

E. (III) and (IV) only
Simulation 3: Finite square well
(a) Draw an approximate sketch of the energy eigenfunctions for the ground state 
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 and the first excited state 
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 for an electron in a finite square well at time t=0.

(b) Predict and sketch the shape of the wave function
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 at time t=0.

Double click on “bound-states.jar” to open the simulation program. You can change the depth and width of the 1-D finite square well and select the energy level to observe the absolute square of energy eigenfunction. You can click the button “Superposition State” to setup the coefficients of different energy eigenstates to build a superposition state. After you have input the coefficients in the window of “Superposition State”, you can choose “Normalize” and then click “Apply” to observe the new superposition state. You can also observe the time evolution of the absolute square of the wavefunction (probability density) by clicking the button “Play/Pause”.
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(c) Build the superposition state 
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 in the simulation. Is the shape of wavefunction the same as your prediction in step (b)? Explain. 

(d) Build a superposition wavefunction with three different energy eigenstates. Record your coefficient for each eigenstate and sketch the absolute value of the superposition wavefunction below. Is your superposition wavefunction symmetric? Explain.

15. Choose all of the following statements that are correct about the wave function below for an electron interacting with a finite square well of width a (
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Smooth function that goes to zero within the region x=0 and x=a.

(I) It is a possible wave function because it is a continuous, smooth normalizable function that satisfies the boundary conditions.

(II) It is not a possible wave function because it doesn’t satisfy the boundary conditions; it goes to zero inside the well.

(III) It is not a possible wave function because the probability of finding the particle outside the finite square well is zero but quantum mechanically it must be nonzero.

A. (I) only

B. (II) only

C. (III) only

D. (II) and (III) only

E. None of the above. 
16. Choose all of the following statements that are correct about the wave function below for an electron interacting with a finite square well of width a (
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(I) It is a possible wave function because it is a continuous, smooth and normalizable function that satisfies the boundary conditions.

(II) It is not a possible wave function because it goes to zero at the boundaries of the well.

(III) It is not a possible wave function because it is not an energy eigenfunction.

A. (I) only

B. (II) only

C. (III) only

D. (II) and (III) only

E. None of the above.

17. Choose all of the following statements that are correct about the wave function below for an electron interacting with a finite square well of width a (
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(I) It is a possible wave function because it is a continuous, smooth and normalizable function that satisfies the boundary conditions.

(II) It is not a possible wave function because it goes to zero at x=a.

(III) It is not a possible wave function because it is not an energy eigenfunction.

(IV) It is not a possible wave function because it is not symmetric with respect to the well.

A. (I) only

B. (II) only

C. (II) and (III) only

D. (II) and (IV) only

E. (III) and (IV) only
Simulation 4: Time evolution of a state in a finite square well
(a) When the initial wave function at time t=0 is 
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, predict whether the shape of the wavefunction will change with time. Explain by writing down the wavefunction 
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Then use the same simulation program as in “Simulation 3” to answer the following questions.

(b) Build the superposition state 
[image: image90.wmf][

]

)

(

)

(

2

1

2

1

x

x

y

y

+

 in the simulation and start the time evolution to check your prediction in (a).
(c) When the initial state is 
[image: image91.wmf])
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, will the shape of the absolute square of the wavefunction (probability density) change with time? Use the simulation to check your prediction.
18. Sketch the ground state for a finite square well and the ground state for an infinite square well separately. Compare and explain the similarities and differences of these two ground states.

19. Which one of the following graphs correctly represents an energy eigenfunction of a free particle? The function in Figure (a) below oscillates over all space (not shown).
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(e) None of the above
20. Is the energy eigenfunction of a free particle 
[image: image96.wmf]ikx
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 normalizable? Explain. 
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 is a constant.
21. Can 
[image: image98.wmf]ikx
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 be a possible wavefunction for a free particle? Explain. 
[image: image99.wmf]A

 is a constant.

22. Consider the following conversation between Sally and Harry.

Sally: How can the energy eigenfunction not be a possible wave function for the free particle? 

Harry: Because the absolute square of the wavefunction must be normalizable. Otherwise the total probability of finding the particle would be infinite.
Sally: I disagree. If the energy eigenfunction is not a possible wave function, that means we cannot have a free particle with definite value of energy or momentum. But classically we can always have a free particle moving with a constant momentum.
Harry: Well, the free particles in reality exist as wave packets. The magnitude of the momentum of a free particle is 
[image: image100.wmf]k
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 and the energy is 
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, where 
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 is the wave vector. A wave packet could consist of plane waves 
[image: image103.wmf]ikx
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 with different wave vectors 
[image: image104.wmf]k

 in a very narrow range. Thus, we can consider the wave packet as “effectively” having a definite energy and momentum, if the distribution of energy/momentum is highly localized about a given wave vector 
[image: image105.wmf]k

.
Do you agree with Sally or Harry? Explain.

23. Consider the following conversation between Harry and Sally: 
Sally : My friend in the condense matter research group told me that they often use the plane wave 
[image: image106.wmf]ikx
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 as the wavefunctions to analyze solid state system. 

Harry: Yes. Although the plane waves are not normalizable when the space expands from 
[image: image107.wmf]¥

-

 to 
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, it is often useful to confine particles in a box with length 
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 and a periodical boundary condition (
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). For a particle confined in a box with length 
[image: image111.wmf]L

 and a periodical boundary condition, the stationary state wavefunction could be written as 
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 is discrete. However, for a macroscopic system, 
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 is very large (
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 as opposed to 
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 which is the size of the atom) so that 
[image: image118.wmf]k

 could be considered as “quasi” continuous. We often use a large but finite box with periodical boundary condition to study the bulk properties of a macroscopic physical system. In this case, for particle confined in one spatial dimension, using plane wave 
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 as a possible wavefunction would be acceptable.
Sally: For the wavefunction 
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 , 
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 is the normalization constant, right?
Harry: Yes. You can calculate the integral result of 
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 to prove that this wave function is normalizable. 
Do you agree with Harry? Explain. Write down the integral result that Harry mentioned above.
Simulation 5.  Free particle
Double click the “qm_FreeParticleWavepacket.jar” to open the simulation program. You can see the “Position Space” windows as below. (Another window “Momentum Space” may also pop up. Just close it since we only need to observe the position space wave packet in this tutorial.) The “position space” window shows the absolute value of the wave packet in position space. And you can start/stop the time evolution of the absolute value of wavefunction or reset the initial wave packet.
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(a) Sketch the wave packet in the simulation at time t=0. Will the shape of the absolute value of wave packet change with time? Explain.
(b) Start the time evolution and observe the wave packet at time t=1 unit. Is this result consistent with your prediction in (a)? Explain.

24. Consider the following conversation between Sally and Harry.
Sally: Why does the wave packet in the simulation spread out with time?

Harry: Because the wave packet is not a stationary state wavefunction. As shown in the graph below
, the wave packet consists of different energy eigenstates with different wave vectors 
[image: image124.wmf]k

. The different energy eigenstates would evolve with time at different phase velocities. In other words, the magnitude of phase velocity 
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 is different for the different components of the wave packet. Therefore, the wave packet cannot remain localized. 
Do you agree with Harry? Explain.
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25. Use the expression for the free particle energy eigenvalue 
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 to find the magnitude of phase velocity in terms of wave vector 
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26. Construct a general wave packet for a free particle at time t. Remember that for discrete energies 
[image: image129.wmf]n
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 and stationary states 
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 are the time-independent coefficients for each stationary state. You can use this analogy to find 
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 for a free particle except that the scattering states are continuous instead of discrete. So the summation should be replaced with an integral when constructive the wave packet. The energy eigenfunctions for a free particle are of the form 
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 with energy eigenvalues 
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� The image is edited based on the graphs at � HYPERLINK "http://hyperphysics.phy-astr.gsu.edu/Hbase/Waves/wpack.html" \l "c2" �http://hyperphysics.phy-astr.gsu.edu/Hbase/Waves/wpack.html#c2� and � HYPERLINK "http://www.physics.csbsju.edu/QM/fall.12.html" �http://www.physics.csbsju.edu/QM/fall.12.html�
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