An electron in a uniform magnetic field: Larmor precession of spin

For reference, if we choose the eigenstates of \hat{S}_z as the basis vectors, the components of the spin angular momentum are given by:

$$S_z=\hbar/2\left(\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right),\,S_x=\hbar/2\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right),\,S_y=\hbar/2\left(\begin{smallmatrix}0&-i\\i&0\end{smallmatrix}\right).$$

The following identities may be useful:

$$(e^{i\theta} + e^{-i\theta})/2 = \cos(\theta), (e^{i\theta} - e^{-i\theta})/(2i) = \sin(\theta)$$

 $\cos^2(\theta) - \sin^2(\theta) = \cos(2\theta), 2\sin(\theta)\cos(\theta) = \sin(2\theta), \cos^2(\theta) + \sin^2(\theta) = 1$

- 1. In quantum mechanics, the energy associated with the spin magnetic moment has a corresponding Hamiltonian operator \hat{H} for the spin degrees of freedom. If the uniform magnetic field is $\vec{B} = B_0 \hat{k}$, then $\hat{H} = -\gamma B_0 \hat{S}_z$. Which one of the following is the \hat{H} in the matrix form in the chosen basis?
 - (a) $-\gamma B_0 \hbar/2 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - (b) $-\gamma B_0 \hbar / 2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
 - (c) $-\gamma B_0 \hbar / 2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - (d) $-\gamma B_0 \hbar/2 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
- 2. If we measured the energy of the above system, which one of the following gives the allowed values of energy E_+ and E_- ?
 - (a) $\mp \gamma B_0 \hbar/2$
 - (b) $\mp \hbar/2$
 - (c) $\mp \gamma B_0 \hbar$
 - (d) None of the above
- 3. Consider the following conversation between Andy and Caroline about the above Hamiltonian operator:
 - Andy: \hat{H} is essentially \hat{S}_z except for some multiplicative constants. Therefore, the eigenstates of \hat{S}_z will also be the eigenstates of \hat{H} .
 - Caroline: No. The presence of magnetic field will make the eigenstates of \hat{S}_z and \hat{H} different. The eigenstates of \hat{H} will change with time in a non-trivial manner.
 - Andy: I disagree. If the magnetic field had a time dependence, e.g., $B = B_0 \cos(\omega t) \hat{k}$, the eigenstates of \hat{H} will change with time in a non-trivial manner but not for the present case where \vec{B} is constant.

With whom do you agree?

- (a) Andy
- (b) Caroline
- (c) Neither

- 4. If the eigenstates of \hat{S}_z and \hat{H} , $|\uparrow\rangle_z$ and $|\downarrow\rangle_z$, are chosen as the basis vectors, which one of the following is their matrix representation?
 - (a) $\binom{1}{0}$ and $\binom{0}{1}$
 - (b) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 - (c) $1/\sqrt{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $1/\sqrt{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 - (d) $1/\sqrt{2} \begin{pmatrix} 1 \\ i \end{pmatrix}$ and $1/\sqrt{2} \begin{pmatrix} 1 \\ -i \end{pmatrix}$
- 5. If we choose $|\uparrow\rangle_z$ and $|\downarrow\rangle_z$ as the basis vectors for the two dimensional spin space, which one of the following is the correct expression for a general state $|\chi\rangle$?
 - (a) $|\chi\rangle = a|\uparrow\rangle_z + b|\downarrow\rangle_z$ where |a| + |b| = 1.
 - (b) $|\chi\rangle = a|\uparrow\rangle_z + b|\downarrow\rangle_z$ where $|a|^2 + |b|^2 = 1$.
 - (c) $|\chi\rangle = a|\uparrow\rangle_z + b|\downarrow\rangle_z$ where a and b can be any integers.
 - (d) $|\chi\rangle = a|\uparrow\rangle_z \times b|\downarrow\rangle_z$ where a and b can be any integers.
- 6. If the state of the system at an initial time t=0 is given by $|\chi(t=0)\rangle = a|\uparrow\rangle_z + b|\downarrow\rangle_z$, which one of the following is the correct matrix representation of this state in the chosen basis?
 - (a) $\begin{pmatrix} a \\ b \end{pmatrix}$
 - (b) $\begin{pmatrix} a-b \\ a+b \end{pmatrix}$
 - (c) $\begin{pmatrix} a+b \\ a-b \end{pmatrix}$
 - (d) $1/\sqrt{2} \begin{pmatrix} a \\ b \end{pmatrix}$
- 7. If the state of the system at an initial time t=0 is given by $|\chi(t=0)\rangle = a|\uparrow\rangle_z + b|\downarrow\rangle_z$, which one of the following is the state, $|\chi(t)\rangle$, after a time t?
 - (a) $e^{i\gamma B_0 t/2}(a|\uparrow\rangle_z + b|\downarrow\rangle_z)$
 - (b) $e^{-i\gamma B_0 t/2} (a|\uparrow\rangle_z + b|\downarrow\rangle_z)$
 - (b) $e^{i\gamma B_0 t/2} [(a+b)|\uparrow\rangle_z + (a-b)|\downarrow\rangle_z]$
 - (d) $e^{i\gamma B_0 t/2} a \uparrow \rangle_z + e^{-i\gamma B_0 t/2} b \downarrow \rangle_z$
- 8. If the state of the system at an initial time t=0 is given by $|\chi(t=0)\rangle=a|\uparrow\rangle_z+b|\downarrow\rangle_z$, which one of the following is the correct matrix representation of this state, $|\chi(t)\rangle$, after a time t?
 - (a) $e^{i\gamma B_0 t/2} \begin{pmatrix} a \\ b \end{pmatrix}$
 - (b) $e^{-i\gamma B_0 t/2} \begin{pmatrix} a \\ b \end{pmatrix}$

 - (c) $e^{-i\gamma B_0 t/2} \begin{pmatrix} a+b \\ a-b \end{pmatrix}$ (d) $\begin{pmatrix} ae^{i\gamma B_0 t/2} \\ be^{-i\gamma B_0 t/2} \end{pmatrix}$

Note: All of the following questions refer to the system for which the Hamiltonian operator is $\hat{H} = -\gamma B_0 \hat{S}_z$.

In all of the questions below, $|\chi(t)\rangle$ is the state you calculated above and assume that the coefficients a and b in the state are non-zero unless mentioned specifically otherwise.

- 9. Which one of the following gives the correct outcomes of measuring S_z in the state $|\chi(t)\rangle$?
 - (a) $\hbar/2$ with a probability $ae^{i\gamma B_0t/2}$ and $-\hbar/2$ with a probability $be^{-i\gamma B_0t/2}$.
 - (b) $\hbar/2$ with a probability $a^2e^{i\gamma B_0t}$ and $-\hbar/2$ with a probability $b^2e^{-i\gamma B_0t}$.
 - (c) $\hbar/2$ with a probability $|a|^2$ and $-\hbar/2$ with a probability $|b|^2$.
 - (d) $\hbar/2$ and $-\hbar/2$ with equal probability.
- 10. Consider the following conversation between Andy and Caroline about measuring \hat{S}_z in the state $|\chi(t)\rangle$:
 - Andy: Since the probability of measuring $\hbar/2$ is $|a|^2$, $-\hbar/2$ is $|b|^2$ and $|a|^2 + |b|^2 = 1$, we can choose our a and b as $a = e^{i\phi_1}\cos(\alpha)$ and $b = e^{i\phi_2}\sin(\alpha)$ where α , ϕ_1 and ϕ_2 are real numbers.
 - Caroline: I agree. Since $\cos^2(\alpha) + \sin^2(\alpha) = 1$ it gives the same relation as $|a|^2 + |b|^2 = 1$ and there is no loss of generality.

Do you agree with Andy and Caroline?

- (a) Yes.
- (b) No.
- 11. Calculate the expectation value of \hat{S}_z in the state $|\chi(t)\rangle$. Express your answer in terms of α defined earlier as $a = e^{i\phi_1}\cos(\alpha)$ and $b = e^{i\phi_2}\sin(\alpha)$.
- 12. Consider the following conversation between Pria and Mira about $\langle \hat{S}_z \rangle$ in state $|\chi(t)\rangle$:
 - Pria: Since the state of the system $|\chi(t)\rangle$ evolves in time, the expectation value $\langle S_z \rangle$ will depend on time.
 - Mira: I disagree with the second part of your statement. The time development of the expectation value of any operator \hat{A} is given by $\frac{d\langle \hat{A} \rangle}{dt} = \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$. In our case, $[\hat{H}, \hat{S}_z] = 0$ and the operator \hat{S}_z does not have any explicit time dependence so $\frac{\partial \hat{S}_z}{\partial t} = 0$. Thus, $\frac{d\langle \hat{S}_z \rangle}{dt} = 0$ and the expectation value will not change with time.

With whom do you agree?

- (a) Pria
- (b) Mira
- (c) Neither

- 13. Which one of the following is the expectation value $\langle \hat{S}_z \rangle = \langle \chi(t) | \hat{S}_z | \chi(t) \rangle$?
 - (a) $\cos(2\alpha) \cos(\gamma B_0 t) \hbar/2$
 - (b) $\sin(2\alpha) \sin(\gamma B_0 t) \hbar/2$
 - (c) $\cos(2\alpha) \ \hbar/2$
 - (d) $\sin(2\alpha) \hbar/2$
- 14. Which one of the following is true about the expectation value $\langle \hat{S}_x \rangle$ in the state $|\chi(t)\rangle$?
 - (a) $\langle \hat{S}_x \rangle$ depends on time because $[\hat{H}, \hat{S}_x] \neq 0$
 - (b) $\langle \hat{S}_x \rangle$ depends on time because \hat{S}_x has an explicit time-dependence.
 - (c) $\langle \hat{S}_x \rangle$ is time-independent because $[\hat{H}, \hat{S}_x] = 0$
 - (d) None of the above.
- 15. Calculate the expectation value of \hat{S}_x in the state $|\chi(t)\rangle$. Express your answer in terms of α defined earlier as $a = e^{i\phi_1}\cos(\alpha)$ and $b = e^{i\phi_2}\sin(\alpha)$.
- 16. Which one of the following is the expectation value $\langle \hat{S}_x \rangle$ in the state $|\chi(t)\rangle$?
 - (a) $\cos(2\alpha) \cos(\gamma B_0 t + \phi_1 \phi_2) \hbar/2$
 - (b) $\sin(2\alpha) \cos(\gamma B_0 t + \phi_1 \phi_2) \hbar/2$
 - (c) $\cos(2\alpha) \hbar/2$
 - (d) $\sin(2\alpha) \hbar/2$
- 17. Choose all of the following statements that are true about the expectation value $\langle \hat{S}_y \rangle$ in the state $|\chi(t)\rangle$:
 - (I) $\langle \hat{S}_y \rangle$ depends on time because $[\hat{H}, \hat{S}_y] \neq 0$
 - (II) $\langle \hat{S}_y \rangle$ depends on time because \hat{S}_y has an explicit time-dependence.
 - (III) $\langle \hat{S}_y \rangle$ is time-independent because $[\hat{H}, \hat{S}_y] = 0$
 - (a) (I) only
 - **(b)** (II) only
 - **(c)** (III) only
 - (d) (I) and (II) only

- 18. Based upon your responses for $\langle \hat{S}_z \rangle$ and $\langle \hat{S}_x \rangle$ above, which one of the following is a good guess for the expectation value $\langle \hat{S}_y \rangle$ in state $|\chi(t)\rangle$? Note: Please work this out explicitly as homework similar to your calculation for $\langle \hat{S}_x \rangle$ above.
 - (a) $\cos(2\alpha) \cos(\gamma B_0 t + \phi_1 \phi_2) \hbar/2$
 - (b) $-\sin(2\alpha) \sin(\gamma B_0 t + \phi_1 \phi_2) \hbar/2$
 - (c) $\cos(2\alpha) \hbar/2$
 - (d) $\sin(2\alpha) \hbar/2$
- 19. Explain why $\langle \hat{S}_z \rangle$ above does not depend on time where as $\langle \hat{S}_x \rangle$ and $\langle \hat{S}_y \rangle$ do.
- 20. Choose all of the following statements that are true about the expectation value $\langle \vec{S} \rangle$ in the state $|\chi(t)\rangle$:
 - (I) $\langle \hat{S} \rangle = \langle \hat{S}_x \rangle \hat{i} + \langle \hat{S}_y \rangle \hat{j} + \langle \hat{S}_z \rangle \hat{k}$
 - (II) $\langle \hat{S} \rangle$ will depend on time because $[\hat{H}, \hat{S}] \neq 0$
 - (III) $\langle \hat{S} \rangle$ cannot depend on time because the expectation value of an observable is its time-averaged value.
 - (a) (I) only
 - **(b)** (II) only
 - **(c)** (III) only
 - (d) (I) and (II) only
- 21. Choose all of the following statements that are true about the expectation value $\langle \hat{S} \rangle$ in the state $|\chi(t)\rangle$:
 - (I) The z component of $\langle \hat{S} \rangle$, i.e., $\langle \hat{S}_z \rangle$, is time-independent.
 - (II) The x and y components of $\langle \hat{S} \rangle$ change with time and they are always "out of phase" with each other for all times.
 - (III) The magnitude of the maximum values of $\langle \hat{S}_x \rangle$ and $\langle \hat{S}_y \rangle$ are the same but when $\langle \hat{S}_x \rangle$ is a maximum $\langle \hat{S}_y \rangle$ is a minimum and vice versa.
 - (a) (I) and (II) only
 - (b) (I) and (III) only
 - (c) (II) and (III) only
 - (d) (I), (II) and (III)

- 22. Choose all of the following statements that are true about the vector $\langle \hat{S} \rangle$ in the spin space in the state $|\chi(t)\rangle$:
 - (I) The vector $\langle \hat{S} \rangle$ can be thought to be precessing about the z axis at an angle 2α .
 - (II) The vector $\langle \hat{S} \rangle$ can be thought to be precessing about the z axis with a frequency $\omega = \gamma B_0$.
 - (III) All the three components of vector $\langle \hat{S} \rangle$ change as it precesses about the z axis.
 - (a) (I) and (II) only
 - (b) (I) and (III) only
 - (c) (II) and (III) only
 - (d) (I), (II) and (III)
- 23. Choose a three dimensional coordinate system in the spin space with the z axis in the vertical direction. Draw a sketch showing the precession of $\langle \hat{S} \rangle$ about the z axis when the state of the system starts out in $a|\uparrow\rangle_z + b|\downarrow\rangle_z$. Show the angle that $\langle \hat{S} \rangle$ makes with the z axis and the precession frequency explicitly.

Show the projection of $\langle \hat{S} \rangle$ along the x, y and z axes at two separate times. Explain in words why the projection of $\langle \hat{S} \rangle$ along the z direction does not change with time but those along the x and y directions change with time.

Now consider a very specific initial state which is an eigenstate of \hat{S}_z , e.g., $|\uparrow\rangle_z$, in the following questions (as opposed to a very general initial state $a|\uparrow\rangle_z + b|\downarrow\rangle_z$ in the previous questions).

- 24. If the electron is initially in the state $|\chi(0)\rangle = |\uparrow\rangle_z$, write the state of the system $|\chi(t)\rangle$ after a time t. The Hamiltonian operator is $\hat{H} = -\gamma B_0 \hat{S}_z$.
- 25. Evaluate the expectation values of \hat{S}_x , \hat{S}_y and \hat{S}_z at time t in the above state. Which of these expectation values depend on time?

- 26. Explain why each expectation value you calculated in the previous question does or does not depend on time.
- 27. Calculate the expectation value $\langle \chi(t)|[\hat{H},\hat{S}_x]|\chi(t)\rangle$ in the above state by writing $\hat{H}=-\gamma B_0\hat{S}_z$ explicitly and acting with \hat{S}_z on the state $|\chi(t)\rangle$.
- 28. Since $\frac{d\langle \hat{A} \rangle}{dt} = \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$ what can you infer about the time-dependence of $\langle \hat{S}_x \rangle$ in the state $|\uparrow\rangle_z$ from your last response? What about $\langle \hat{S}_y \rangle$ or $\langle \hat{A} \rangle$ where the operator \hat{A} does not have an explicit time-dependence?
- 29. Consider the following statements from Pria and Mira when the electron is initially in an eigenstate of \hat{S}_z . The Hamiltonian operator is $\hat{H} = -\gamma B_0 \hat{S}_z$.
 - Pria: The electron will NOT be in an eigenstate of \hat{S}_z forever because the state will evolve in time.
 - Mira: I disagree. The eigenstates of \hat{S}_z are also the eigenstates of \hat{H} . When the system is in an energy eigenstate or a stationary state, the time dependence is via an overall phase factor. The system stays in the stationary state. Since the system is in a stationary state, the expectation value of ANY operator (that does not have an explicit time dependence) will not depend on time as we saw due to $\langle \chi(t)|[\hat{H},\hat{S}_x]|\chi(t)\rangle=0$.

With whom do you agree? Explain why the other person is not correct.

- (a) Pria
- (b) Mira

- 30. Consider the following statements from Pria and Mira when the electron is initially in an eigenstate of \hat{S}_z . The Hamiltonian operator is $\hat{H} = -\gamma B_0 \hat{S}_z$.
 - Pria: But shouldn't the expectation value $\langle \vec{S} \rangle = \langle S_x \rangle \hat{i} + \langle S_y \rangle \hat{j} + \langle S_z \rangle \hat{k}$ precess about the z axis whether the state is $|\uparrow\rangle_z$ or $a|\uparrow\rangle_z + b|\downarrow\rangle_z$?
 - Mira: No. Since $|\uparrow\rangle_z$ is an eigenstate of the Hamiltonian, it is a stationary state which has a trivial time dependence. $\langle \hat{S}_x \rangle$ and $\langle \hat{S}_y \rangle$ do not depend on time since the state will remain an energy eigenstate and will evolve by a trivial overall time-dependent phase factor as $e^{-iE_+t/\hbar}|\uparrow\rangle_z$. There is no precession.
 - Pria: How can that be?
 - Mira: Another way to reason about it is by comparing $|\uparrow\rangle_z$ with $a|\uparrow\rangle_z + b|\downarrow\rangle_z$. If our state is $|\uparrow\rangle_z$ then $a=e^{i\phi_1}\cos(\alpha)=1$ and $b=e^{i\phi_2}\sin(\alpha)=0$ which implies that $\alpha=0$ and $\langle\vec{S}\rangle$ is pointing along the z direction. Thus, there is no precession. If you calculate $\langle\hat{S}_x\rangle$ and $\langle\hat{S}_y\rangle$ in this state, they will both be always zero since the projection of $\langle\vec{S}\rangle$ along the x and y axis is zero.

With whom do you agree? Explain.

- (a) Pria
- (b) Mira
- 31. Calculate $\langle \hat{S}_x \rangle$ and $\langle \hat{S}_y \rangle$ in the state $e^{-iE_+t/\hbar}|\uparrow\rangle_z$ to verify your response above.

- 32. If the electron is initially in the state $|\downarrow\rangle_z$, what is $|\chi(t)\rangle$ at a time t. Find the angle that $\langle \vec{S}\rangle$ makes with the z axis. Is there any precession in this case? Explain.
- 33. Choose all of the following statements that are true if the system is initially in an eigenstate of \hat{S}_z , $|\uparrow\rangle_z$, and the Hamiltonian operator $\hat{H} = -\gamma B_0 \hat{S}_z$:
 - (I) $\langle \hat{S}_x \rangle$ depends on time because $[\hat{H}, \hat{S}_x] \neq 0$
 - (II) $\langle \hat{S}_y \rangle$ depends on time because $[\hat{H}, \hat{S}_y] \neq 0$
 - (III) The vector $\langle \hat{S} \rangle$ can be thought to be precessing about the z axis.
 - (a) (I) and (II) only
 - (b) (III) only
 - (c) (I), (II) and (III)
 - (d) None of the above

34. If $\hat{H} = -\gamma B_0 \hat{S}_z$ and the electron is initially in the state $|\uparrow\rangle_x$, what is the state after time t?

35. Based upon your answer to the preceding question, should the expectation value $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ and $\langle \hat{S}_z \rangle$ depend on time if the initial state is an eigenstate of \hat{S}_x , i.e., $|\uparrow\rangle_x$? Work out each of these expectation values at time t to justify your answer for each case.

36. Consider the following conversation between three students about the preceding problem in which the Hamiltonian for the system $\hat{H} = -\gamma B_0 \hat{S}_z$:

Student A: If the electron is initially in an eigenstate of \hat{S}_x , expectation value of \hat{S}_x is time-independent because the electron is stuck in the eigenstate.

Student B: I disagree. If the electron is initially in an eigenstate of \hat{S}_x , only the expectation value of \hat{S}_z is time independent because \hat{S}_z and the Hamiltonian H commute with each other. Since an eigenstate of \hat{S}_x is not a stationary state, the time-dependence of the eigenstate of \hat{S}_x is non-trivial. You can see this by writing the eigenstate of \hat{S}_x , e.g., $|\uparrow\rangle_x$, in terms of eigenstates of the Hamiltonian at time t=0 and then writing down the state after time t explicitly.

Student C: S_z is a constant of motion since \hat{S}_z and the Hamiltonian H commute with each other. Therefore, $\langle \hat{S}_z \rangle$ is time-independent in any state. With whom do you agree? Explain.