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Finding Splitting in the Hydrogen Atom Energy Spectrum due
to an External Magnetic Field (Zeeman Effect)-PART II

The focus in degenerate perturbation theory is on ensuring that Ĥ ′ is diagonal in each degenerate subspace
of Ĥ0. The degeneracy in Ĥ0 is 2n2 fold for each n. Our focus is always on a fixed n. The radial basis states
are always Rnl(r), which are solutions to the radial part of the time-independent Schrödinger equation for Ĥ0.
We will learn how to determine a “good” angular basis.

1 Definition

For a given unperturbed Hamiltonian Ĥ0 and perturbation Ĥ ′, a “good” basis consists of a complete set of
eigenstates of Ĥ0 that diagonalizes Ĥ ′ in each degenerate subspace of Ĥ0 (Ĥ0 remains diagonal everywhere
since the basis states are eigenstates of Ĥ0).

• Once you have a “good” basis for a given Ĥ0 and Ĥ ′, you can use the same expressions that you use in
non-degenerate perturbation theory for perturbative corrections.

2 Notes for this tutorial:

* If you are not familiar with the steps to determine a “good” basis for finding corrections to the unperturbed
energies when the energy spectrum has degeneracy, please work through the pretest, tutorial and posttest
for Basics of Degenerate Perturbation Theory before working on this tutorial.

* A Hermitian operator Q̂ has the property Qij = (Qji)
∗. Here ∗ denotes the complex conjugate.

* For the matrix representation of a Hermitian operator Q̂ in a given basis, we will use “=” or “is equal
to” instead of “

.
=” or “is represented by” as in the notation below

Q̂ =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 is equivalent to Q̂
.
=

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 .

* In this tutorial, “degeneracy” indicates degeneracy in the unperturbed energy eigenvalue spectrum, i.e.,
the fact that more than one distinct energy eigenstate can have the same energy eigenvalue. For example,
if

Ĥ0|ψa〉 = Ea|ψa〉 and Ĥ0|ψb〉 = Ea|ψb〉,

|ψa〉 and |ψb〉 are degenerate eigenstates of the Hamiltonian Ĥ0 since they correspond to the same energy
Ea.

* We will only consider the bound states of the hydrogen atom.

* The unperturbed bound state energies En are given by En = −13.6eV
n2 , n = 1, 2, 3, . . ..

* For any basis we choose, the radial parts of the wavefunctions Rnl (for given quantum
numbers n and l) will always be chosen to be the radial parts of a complete set of eigenstates
of Ĥ0. In other words, our focus will be on the choice of the angular part of the wavefunction
in order to find a “good” basis for degenerate perturbation theory for the given Ĥ0 and Ĥ ′

for the hydrogen atom.
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* We will restrict our focus to a finite subspace of the infinite dimensional Hilbert space.

– As an example of a degenerate subspace of the unperturbed Hamiltonian Ĥ0, only the subspace with
the principal quantum number n = 2 will be considered.

– The results can be generalized to any quantum number n.

* The external magnetic field will be chosen to be a uniform, time independent field along the ẑ direction
given by ~B = Bextẑ.

* We will account for the coupling of the external magnetic field with both the orbital and spin angular
momentum.

* We will use the following notations interchangeably to write states in the uncoupled representation (in
which basis states are eigenstates of L̂2, Ŝ2, L̂Z , and ŜZ) with a given set of quantum numbers (notation
for quantum numbers is standard):

– |n l s ml ms〉
– |l, ml〉|s, ms〉 (if n is fixed)

– |l, ml, ms〉 (if n and s are fixed)

* ~J = ~L+ ~S

* We will use the following notations interchangeably to write states in the coupled representation (in which
basis vectors are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ) with a given set of quantum numbers (notation for
quantum numbers is standard):

– |n l s j mj〉
– |l, s, j, mj〉 (if n is fixed)

– |l, j, mj〉 (if n and s are fixed)

* In both Part I and Part II of this tutorial, we will consider the case in which s = 1
2 so this quantum

number may be suppressed in writing a state (e.g., |l ml ms〉 or |l j mj〉).

3 Physical Constants

Below is a list of physical constants used in this tutorial.

Planck’s constant: h̄ = 1.05× 10−34 J s

Mass of the electron: m = 9.11× 10−31 kg

Charge of an electron (magnitude): e = 1.60× 10−19 C

Speed of light: c = 2.99× 108 m/s

Permittivity of space: ε0 = 8.85× 10−12 C2/J m

Bohr radius: a = 4πε0h̄
2

me2
= 0.529× 10−10 m

Bohr magneton: µB = eh̄
2m = 5.79× 10−5 eV/T

Fine structure constant: α = e2

4πε0h̄c
≈ 1

137 = 7.30× 10−3
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NOTE : The following equations may be helpful.

E1
n = 〈ψ0

n|Ĥ ′|ψ0
n〉

|ψ1
n〉 =

∑
m6=n

〈ψ0
m|Ĥ ′|ψ0

n〉
(E0

n − E0
m)
|ψ0
m〉

Ŝ2|s ms〉 = h̄2s(s+ 1)|s ms〉 Ŝz|s ms〉 = h̄ms|s ms〉

Ŝ±|s ms〉 = h̄
√
s(s+ 1)−ms(ms ± 1))|s ms ± 1〉

L̂2|l ml〉 = h̄2l(l + 1)|l ml〉 L̂z|l ml〉 = h̄ml|l ml〉

L̂±|l ml〉 = h̄
√
l(l + 1)−ml(ml ± 1))|l ml ± 1〉

~J = ~L+ ~S

Ĵ2|l, s, j, mj〉 = h̄2j(j + 1)|l, s, j, mj〉 Ĵz|l, s, j mj〉 = h̄mj |l, s, j, mj〉

Ŝ2|l, s, j, mj〉 = h̄2s(s+ 1)|l, s, j, mj〉 L̂2|l, s, j mj〉 = h̄2l(l + 1)|l, s, j, mj〉

~L · ~S =
1

2
(Ĵ2 − Ŝ2 − L̂2) =

1

2
(L̂+Ŝ− + L̂−Ŝ+) + L̂zŜz
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4 Objectives:

Upon completion of this tutorial, you should be able to do the following for the hydrogen atom:

1. Identify the unperturbed Hamiltonian Ĥ0 and the perturbing Hamiltonian Ĥ ′.

2. Identify the degeneracy in the unperturbed Hamiltonian Ĥ0 in each degenerate subspace corresponding
to a principal quantum number n.

3. Determine a “good” basis for finding the corrections to the unperturbed energies of the hydrogen atom
for only the fine structure perturbation Ĥ ′fs.

4. Find the first order corrections to energies due to the fine structure perturbation Ĥ ′fs.

5. Determine a “good” basis for finding the corrections to the unperturbed energies of the hydrogen atom
due to the Zeeman effect (including in intermediate, strong, and weak magnetic field).

6. Find the first order corrections to energies in the intermediate field Zeeman effect.

7. Find the first order corrections to energies in the strong field Zeeman effect.

8. Find the first order corrections to energies in the weak field Zeeman effect.

5 The Hydrogen Atom Placed in an External Magnetic Field

The Hamiltonian of the hydrogen atom placed in an external magnetic field is

Ĥ = Ĥ0 + Ĥ ′r + Ĥ ′SO + Ĥ ′Z = Ĥ0 + Ĥ ′fs + Ĥ ′Z (1)

in which

• Ĥ0 = p̂2

2m −
e2

4πε0

(
1
r

)
accounts only for the interaction of the electron with the nucleus via Coulomb

attraction

• Ĥ ′r = − p̂4

8m3c2
is the relativistic correction term

• Ĥ ′SO = e2

8πε0
1

m2c2r3
~L · ~S is the spin-orbit interaction term

and combining the relativistic and spin-orbit terms

• Ĥ ′fs = Ĥ ′SO + Ĥ ′r is the fine structure term

• Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz) is the Zeeman term, in which ~Bext = Bextẑ.
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6 Perturbation Theory

• In order to find the first order corrections to the energies due to a perturbation Ĥ ′, we must first find a
“good” basis for the given Ĥ0 and Ĥ ′.

• A “good” basis is defined as one which satisfies the following two conditions:

1. The entire unperturbed Hamiltonian Ĥ0 is diagonal (i.e., basis states are eigenstates of Ĥ0).

– We know from Part I of this tutorial that the unperturbed Hamiltonian matrix Ĥ0 is diagonal
if the coupled or uncoupled representation or any arbitrary complete orthonormal basis found
with linear combinations of a complete set of the coupled or uncoupled states with the same
principal quantum number n is chosen as the angular basis (as a consequence of the spherical
symmetry of Ĥ0 and the unperturbed energy only depending on n as En = −13.6 eV

n2 ).

2. The perturbing Hamiltonian Ĥ ′ is diagonal in each degenerate subspace of Ĥ0.

– We always choose Rnl as the radial part of the basis and focus on the angular basis for deter-
mining a “good” basis for a given Ĥ0 and Ĥ ′.

– We shall consider several types of perturbing Hamiltonian, Ĥ ′, and determine whether the cou-
pled representation, the uncoupled representation, some special orthonormal basis constructed
with linear combinations of the coupled or the uncoupled states, or any arbitrary complete or-
thonormal basis constructed with linear combinations of the coupled or the uncoupled states
with the same principal quantum number n and the same l diagonalizes Ĥ ′ in each degenerate
subspace of Ĥ0.

• In Part I, we found:

– Ĥ0 (spherically symmetric with energy only depending on n as En = −13.6 eV
n2 ) is diagonal if the

coupled representation, the uncoupled representation, or any arbitrarycomplete orthonormal basis
constructed with linear combinations of a complete set of states in the coupled or the uncoupled
representation (with the same n) is chosen as the angular basis.

– Ĥ ′r (spherically symmetric with energy depending on both n and l) is diagonal in each degenerate
subspace of Ĥ0 if the coupled representation, the uncoupled representation, or any arbitrary complete
orthonormal basis constructed with linear combinations of states with the same n and l in the coupled
or the uncoupled representation is chosen as the angular basis.

– Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 if the coupled representation is chosen as the
angular basis.

– Ĥ ′Z is diagonal if the uncoupled representation is chosen as the angular basis.
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6.1 The Hydrogen Atom in an External Magnetic Field

• In order to find the corrections to the unperturbed energies in the presence of an external magnetic field,
we shall consider the following two terms in the Hamiltonian perturbatively:

Ĥ ′ = Ĥ ′fs + Ĥ ′Z (2)

in which Ĥ ′fs is the fine structure correction term and Ĥ ′Z is the Zeeman term incorporating the effect of
the external magnetic field.

• The perturbative corrections due to these terms are small compared to the unperturbed energies due to
Ĥ0, but both terms are important in terms of determining splittings in the energy spectrum so that they
should both be considered simultaneously.

• Let’s first consider the fine structure. Here is the order in which we shall proceed:

I. Determining a “good” angular basis and corrections to the energies for ONLY the fine structure
perturbation Ĥ ′fs.

– The fine structure correction Ĥ ′fs is made up of two mechanisms: Ĥ ′fs = Ĥ ′r + Ĥ ′SO, in which Ĥ ′r is

the relativistic correction term and Ĥ ′SO is the spin-orbit interaction term (due to the coupling of
the orbital and spin angular momenta of the electron).

II. Determining a “good” angular basis and corrections to the energies for ONLY the Zeeman per-
turbation Ĥ ′Z .

– The Zeeman effect in the hydrogen atom (or any atom) is the splitting of the energy spectrum as a
result of placing the atom in an external magnetic field.

III. Determining a “good” angular basis and corrections to the energies for BOTH the fine structure
and Zeeman perturbations combined: Ĥ ′ = Ĥ ′fs + Ĥ ′Z .

– In this tutorial we will learn about three cases with Ĥ ′ = Ĥ ′fs + Ĥ ′Z :

∗ CASE 1: The Intermediate Field Zeeman Effect

· The intermediate field Zeeman effect describes a situation when the first-order corrections
to the energies due to the spin-orbit coupling term Ĥ ′fs and the Zeeman term Ĥ ′Z in Ĥ ′ are
comparable to one another. (We will use the notations E′Z ≈ E′fs to denote the intermediate
field Zeeman effect).

– along with two limiting cases:

∗ CASE 2: The Strong Field Zeeman Effect (E′Z � E′fs)

· The strong field Zeeman effect describes a situation when the first-order corrections to the
energies due to the Zeeman term is stronger than the first-order corrections to the energies

due to the spin-orbit coupling term in Ĥ ′. (We will use the notation E′Z � E′fs to denote
the strong field Zeeman effect).

∗ CASE 3: The Weak Field Zeeman Effect (E′fs � E′Z)

· The weak field Zeeman effect describes a situation when the first-order corrections to the
energies due to the spin-orbit coupling term is stronger than the first-order corrections to

the energies due to the Zeeman term in Ĥ ′. (We will use the notation E′fs � E′Z to denote
the weak field Zeeman effect)
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I. Determining a “GOOD” Angular Basis and Corrections to the Energies
for ONLY the Fine Structure Perturbation Ĥ ′fs.

As noted, the fine structure perturbation is comprised of two mechanisms: the relativistic correction Ĥ ′r and
the spin-orbit interaction Ĥ ′SO:

Ĥ ′fs = Ĥ ′r + Ĥ ′SO. (3)

We shall discuss each separately and then find the first order corrections to the energies of the hydrogen atom
due to the combined effect of the relativistic correction and the spin-orbit interaction.

Relativistic Correction

6.2 Finding a “GOOD” Basis for the Relativistic Correction Term as a Perturbation for the Hydrogen Atom

A perturbation Ĥ ′r acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 = − h̄2

2m∇
2 − e2

4πε0
1
r such

that the relativistic correction term in the Hamiltonian is

Ĥ ′r = − p̂4

8m3c2
. (4)

1. For the perturbation Ĥ ′r, will a “good” angular basis for finding the corrections to the energies be the
coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis con-
structed with linear combinations of the coupled or uncoupled states with the same principal quantum
number n and the same l? Explain.

Consider the following conversation regarding finding a “good” basis for the relativistic term Ĥ ′r as a pertur-
bation on Ĥ0 for the hydrogen atom.
Student 1: We found that for a fixed n the spherically symmetric unperturbed Hamiltonian Ĥ0 is diag-
onal in the coupled or the uncoupled representation, as well as in any arbitrary complete orthonormal basis
constructed with linear combinations of states in the coupled representation or the uncoupled representation.
Since the relativistic correction Ĥ ′r is also spherically symmetric, Ĥ ′r will also be diagonal in the coupled or the
uncoupled representation, as well as in any arbitrary complete orthonormal basis constructed with linear com-
binations of basis states with the same n and l in the coupled representation or the uncoupled representation.

Student 2: I agree. Ĥ0 = p̂2

2m −
e2

4πε0
(1
r ) and Ĥ ′r is proportional to p̂4. Both terms are spherically symmetric

because [Ĥ0, ~̂L] = 0 and [Ĥ ′r, ~̂L] = 0. However, the eigenvalues of Ĥ0 only depend on n while the eigenvalues
of Ĥ ′ depend on both n and l. Thus, Ĥ ′r will also be diagonal in both the coupled and the uncoupled repre-
sentation, as well as any arbitrary complete orthonormal basis constructed with linear combinations of states
in the coupled representation or the uncoupled representation.
Student 3: I disagree with both Student 1 and Student 2. The fact that Ĥ ′r is spherically symmetric is not
enough information to determine whether the coupled or uncoupled representation or both will form a “good”
angular basis.
Student 4: I agree with Student 1 and Student 2. For finding the corrections to the energies due to the
perturbation Ĥ ′r, a “good” angular basis can be chosen to be the coupled representation, the uncoupled rep-
resentation, or any arbitrary complete orthonormal basis found with linear combinations of the coupled or
uncoupled states with the same principal quantum number n and the same l.

Explain why you agree or disagree with each student.
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The relativistic correction term Ĥ ′r is spherically symmetric and its energy eigenvalues depend on the quantum
numbers n and l, and therefore the coupled representation, the uncoupled representation, or any arbitrary
complete orthonormal basis constructed with linear combinations of states with a fixed n and l in the coupled
or the uncoupled representation will form a “good” basis. For example, using the same reasoning as for the
unperturbed Hamiltonian Ĥ0 and the example when Ĥ ′ was proportional to δ(r) in Part I of this tutorial,
for a given n and l, Ĥ ′r will be a diagonal in each degenerate subspace of Ĥ0 because the angular part of the
matrix elements of Ĥ ′r will involve 〈l, j,mj |l′, j′,m′j〉 = δl,l′δj,j′δmj ,m′

j
if we choose the coupled representation

or 〈l,ml,ms|l′,m′l,m′s〉 = δl,l′δml,m
′
l
δms,m′

s
if we choose the uncoupled representation. The off-diagonal matrix

elements will be zero due to the Kronecker deltas in either case.

** Check your answers to question 1. **

1. The coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis
constructed with linear combinations of states with the same n and l in the coupled or the uncoupled
representation with the same principal quantum number n and the same l will form a “good” angular
basis for finding the corrections to the energies of the hydrogen atom due to the spherically symmetric

relativistic correction term Ĥ ′r = − p̂4

8m3c2
.

If your answer to question 1 does not match with the checkpoint, go back and reconcile any differences.

6.3 First Order Corrections to the Energy Spectrum of the Hydrogen Atom Due to the Relativistic Correction
Term Using Perturbation Theory

Now that we have determined that the coupled representation, the uncoupled representation, or any arbitrary
complete orthonormal basis constructed with linear combinations of states in the coupled or the uncoupled
representation form a “good” angular basis for Ĥ ′r as the perturbation, we can determine the corrections to the
energies.

• Let {|ψn〉} represent a “good” basis set in which the quantum numbers to describe the angular part of
the {|ψn〉} have been suppressed (those quantum numbers will depend, e.g., on whether we choose the
coupled or uncoupled representation for the angular part).

• If {|ψn〉} forms a “good” basis for Ĥ ′r as a perturbation on the unperturbed Hamiltonian Ĥ0, then the first
order correction to the energy due to Ĥ ′r is given by (using the fact that p̂2 is Hermitian, i.e., (p̂2)† = p̂2)

E′r = 〈ψn|Ĥ ′r|ψn〉 = 〈ψn| −
p̂4

8m3c2
|ψn〉 = − 1

8m3c2
〈p̂2ψn|p̂2ψn〉. (5)

Consider the following statement regarding evaluating p̂2|ψn〉.
Student 1: We evaluate p̂2|ψn〉 by considering the Time-Independent Schrödinger Equation or TISE for the

unperturbed Hamiltonian Ĥ0|ψn〉 = En|ψn〉. Using the TISE [ p̂
2

2m + V (r)]|ψn〉 = En|ψn〉, rearranging and
solving for p̂2|ψn〉 gives p̂2|ψn〉 = 2m[En − V (r)]|ψn〉 which is helpful in evaluating E′r in equation (5). Using
〈p̂2ψn|p̂2ψn〉 = (2m)2〈ψn|[En − V (r)]2|ψn〉, in which V (r) for the hydrogen atom is proportional to 1

r , we can

find the first order corrections to the energies due to Ĥ ′r in Eq. (5).
Do you agree with Student 1’s approach? Explain your reasoning.
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Student 1’s method is helpful in determining p̂2|ψn〉. The first order correction to the energy due to Ĥ ′r in the
“good” basis {|ψn〉} is given by

E′r = − 1

8m3c2
〈p̂2ψn|p̂2ψn〉 = − 1

8m3c2
〈ψn|[2m(En−V (r))]2|ψn〉 = − 1

2mc2
〈ψn|E2

n−2EnV (r)+(V (r))2|ψn〉. (6)

For the Coulomb potential energy V (r) = − 1

4πε0

(
e2

r

)
, the first order correction to the energy becomes

E′r = − 1

2mc2
〈ψn|

[
E2
n + 2En

e2

4πε0

(
1

r

)
+

(
e2

4πε0

)2(
1

r2

)]
|ψn〉. (7)

It can be shown that using the radial part of the wavefunction Rnl (for a given n and l) for the unperturbed
Hamiltonian Ĥ0 for the hydrogen atom yields〈

1

r

〉
=

1

n2a
and

〈
1

r2

〉
=

1

(l + 1/2)n3a2

with Bohr radius

a =
4πε0h̄

2

me2
.

The first order correction to the nth energy state En due to the relativistic correction is

E′r = − E2
n

2mc2

[
4n

l + 1/2
− 3

]
. (8)

In one to two sentences, summarize what you have learned about the “good” angular basis states for finding
the first order corrections to the energy spectrum of the hydrogen atom due to the relativistic correction Ĥ ′r
(pertaining to whether the coupled representation, the uncoupled representation, or any arbitrary complete
orthonormal basis found with linear combinations of states with the same principal quantum number n and the
same l in the coupled or uncoupled representation form a “good” angular basis or all of them form a “good”
angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Relativistic Correction

• The perturbation matrix due to the relativistic correction Ĥ ′r is a diagonal matrix in the degenerate subspace of Ĥ0 in both the coupled and
the uncoupled representation, or in any arbitrary complete orthonormal basis constructed with linear combinations of the coupled or uncoupled
states with the same principal quantum number n and the same l.

• The coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis constructed with linear combinations
of the coupled or uncoupled states with the same principal quantum number n and the same l form a “good” basis for finding corrections to
the energies.

Hamiltonian Uncoupled Is Uncoupled Coupled Is Coupled Is Any Arbitrary Complete Orthonormal Energy
Representation Representation Representation Representation Basis Constructed with Linear Combinations
(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled
Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E′r = − E2
n

2mc2

[
4n

l+1/2 − 3
]
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Spin-orbit Interaction

6.4 Finding a “GOOD” Angular Basis for the Spin-orbit Interaction Correction to the Energy Spectrum of
the Hydrogen Atom in Perturbation Theory

A perturbation Ĥ ′SO acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 = − h̄2

2m∇
2 − e2

4πε0
1
r such

that the spin-orbit interaction term in the Hamiltonian is

Ĥ ′SO =
e2

8πε0

1

m2c2r3
~L · ~S. (9)

2. In each degenerate subspace of Ĥ0, the off-diagonal matrix elements of Ĥ ′SO should be zero in a “good”
basis. Does the coupled or the uncoupled representation, or any arbitrary complete orthonormal basis
found with linear combinations of the coupled or uncoupled states with the same principal quantum num-
ber n form a “good” angular basis for finding the corrections to the energies? Explain.

Consider the following conversation about finding a “good” angular basis for the hydrogen atom due to the
spin-orbit interaction term as the perturbation.
Student 1: The spin-orbit interaction term is proportional to ~L · ~S. Does the coupled or uncoupled represen-
tation, or any arbitrary complete orthonormal basis found with their linear combination form a “good” angular
basis for finding the corrections to the energies?
Student 2: Since ~L · ~S = L̂xŜx + L̂yŜy + L̂zŜz, the uncoupled representation must be a “good” basis because
the basis states in the uncoupled representation are eigenstates of both Ŝz and L̂z.
Student 3: I disagree with Student 2. ~S · ~L is diagonal in the coupled representation because J2 =
(~L + ~S) · (~L + ~S) = L̂2 + Ŝ2 + 2~L · ~S which implies ~L · ~S = 1

2(Ĵ2 − Ŝ2 − L̂2). The basis states in the

coupled representation are eigenstates of Ĵ2, Ŝ2, and L̂2 and hence eigenstates of ~L · ~S.
Student 4 I agree with Student 3. Ĥ ′SO is diagonal in each degenerate subspace of Ĥ0 when the coupled
representation is chosen as the basis, but not when the uncoupled representation is chosen as the basis. The
coupled representation forms a “good” basis for the given Ĥ0 and Ĥ ′SO.

Do you agree with Student 2 or Student 3? Explain.

(If you need further help with why ~S · ~L is diagonal in the coupled representation, see Part I of this tutorial.)
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** Check your answer to question 2. **

2. The coupled representation forms a “good” angular basis for finding the corrections to the energies of
the hydrogen atom due to the spin-orbit interaction term Ĥ ′SO.

If your answer to question 2 does not match with the checkpoint, go back and reconcile any differences.

6.5 First Order Corrections to the Energy Spectrum of the Hydrogen Atom in Perturbation Theory Due to
the Spin-orbit Interaction

Student 3 is correct in the preceding conversation in stating that the coupled representation will form a “good”
angular basis for finding the correction to the energy due to the spin-orbit interaction as a perturbation. The
first order corrections to the energies due to the spin-orbit interaction in a “good” basis are given by

E′SO = 〈n l s j mj |Ĥ ′SO|n l s j mj〉 =

(
e2

8πε0

)
1

m2c2
〈n l s j mj |

1

r3
~L · ~S|n l s j mj〉

E′SO = A〈n l s j mj |
1

r3
~L · ~S|n l s j mj〉 (10)

where A =
(

e2

8πε0

)
1

m2c2
.

Separating the radial (Rnl(r)) and angular parts of eigenstates {|ψ〉} of Ĥ0 in the coupled representation, the
angular part is

〈
l s j mj

∣∣∣~L · ~S∣∣∣ l s j mj

〉
=

〈
l s j mj

∣∣∣∣∣ Ĵ2 − L̂2 − Ŝ2

2

∣∣∣∣∣ l s j mj

〉
=
h̄2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (11)

and the radial part is 〈
n l

∣∣∣∣ 1

r3

∣∣∣∣n l〉 =
1

l(l + 1)(l + 1/2)n3a3
. (12)

Thus, combining equations (10), (11), and (12), the first order correction to the energy due to the spin-orbit
interaction is

E′SO =
E2
n

mc2

[
n(j(j + 1)− l(l + 1)− 3/4)

l(l + 1)(l + 1/2)

]
. (13)

In one to two sentences, summarize what you have learned about the “good” states for finding the first order
corrections to the energy spectrum of the hydrogen atom due to the spin-orbit interaction Ĥ ′SO (pertaining to
whether the coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis
found with linear combinations of states with a fixed principal quantum number n in the coupled or uncoupled
representation form a “good” basis).
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Summary: Finding a “GOOD” Angular Basis for the Spin-orbit Interaction Term Ĥ ′SO

• Ĥ ′SO = A 1
r3

(~L · ~S) = A 1
r3

[
1
2(Ĵ2 − L̂2 − Ŝ2)

]
is diagonal in the each degenerate subspace of Ĥ0 in the coupled representation.

– The basis states in the coupled representation are eigenstates of Ĵ2, L̂2 and Ŝ2 and hence Ĥ ′SO is diagonal in each degenerate subspace of

Ĥ0 if the coupled representation is chosen as the angular basis.

• The coupled representation forms a “good” angular basis for finding the corrections to the energies of the hydrogen atom due to Ĥ ′SO.

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy
Representation Representation Representation Representation Basis Constructed with Linear Combinations
(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled
Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E′r = − E2
n

2mc2

[
4n

l+1/2 − 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]
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Fine Structure Correction

6.6 Finding a “Good” Angular Basis for the Fine Structure Correction Term to the Energy Spectrum of the
Hydrogen Atom in Perturbation Theory

Consider the following conversation regarding finding a “good” angular basis for fine structure term Ĥ ′fs =

Ĥ ′r + Ĥ ′SO as a perturbation on the unperturbed Hamiltonian Ĥ0.

Student 1: The fine structure term Ĥ ′fs is made up of two mechanisms: Ĥ ′SO and Ĥ ′r. The “good” angular

basis is one in which both Ĥ ′SO and Ĥ ′r are diagonal in each degenerate subspace of Ĥ0.
Student 2: I agree. In the preceding table, the coupled representation is a “good” angular basis for both the
relativistic correction term Ĥ ′r and the spin-orbit interaction term Ĥ ′SO, because Ĥ ′r and Ĥ ′SO are both diagonal

in each degenerate subspace of Ĥ0 in the coupled representation. Therefore, the coupled representation forms a
“good” angular basis for finding the corrections to the energies due to the fine structure term Ĥ ′fs = Ĥ ′r + Ĥ ′SO.

Explain why you agree or disagree with each student.

6.7 First Order Corrections to the Energy Spectrum of the Hydrogen Atom in Perturbation Theory Due to
the Fine Structure

Combining the first order corrections to the energies for the hydrogen atom due to the relativistic correction
term in equation (8) and spin-orbit interaction term from equation (13) gives the first order correction to the
energies due to the fine structure correction term in the hydrogen atom.

E′fs = − E2
n

2mc2

[
4n

(j + 1/2)
− 3

]
(14)

3. How many distinct energies does the n = 2 state split into? Explain. [Hint: How many possible values of
j are there for the n = 2 subspace?]
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** Check your answer to question 3. **

3. For n = 2, there are two possible values of j, j = {1
2 ,

3
2}. The energies split into two distinct levels.

l s j E′fs Number of States

0
1

2

1

2
− 5E2

2

2mc2
2

1
1

2

1

2
− 5E2

2

2mc2
2

1
1

2

3

2
− E2

2

2mc2
4

If your answers to question 3 do not match with the checkpoint, go back and reconcile any differences.

In one to two sentences, summarize what you have learned about the “good” angular basis states for finding
the first order corrections to the energy spectrum of the hydrogen atom due to the fine structure term Ĥ ′fs
(pertaining to whether the coupled representation, the uncoupled representation, or any arbitrary complete
orthonormal basis found with linear combinations of states with a fixed principal quantum number n in the
coupled or uncoupled representation form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Fine Structure

• For the entire fine structure perturbation Ĥ ′ = Ĥ ′r + Ĥ ′SO, the coupled representation forms a “good” angular basis because Ĥ ′fs is diagonal in

each degenerate subspace of Ĥ0 in the coupled representation.

Hamiltonian Uncoupled Is Uncoupled Coupled Is Coupled Is Any Arbitrary Complete Orthonormal Energy
Representation Representation Representation Representation Basis Constructed with Linear Combinations
(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled
Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E′r = − E2
n

2mc2

[
4n

l+1/2 − 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No E′fs = − E2
n

2mc2

[
4n

(j+1/2) − 3
]

Ĥ ′r + Ĥ ′SO
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II. Determining a “GOOD” Angular Basis and Corrections to the Energies
for ONLY the Zeeman Perturbation Ĥ ′Z.

Zeeman Effect

6.8 Finding a “GOOD” Angular Basis for the Zeeman term as a Perturbation for the Hydrogen Atom

Note: Treating the Zeeman term as the only perturbation on the unperturbed Hamiltonian is a hypothetical
case, one should always consider both the Zeeman term and the fine structure term when an external magnetic
field is applied to the hydrogen atom. This hypothetical case is presented here to help when later we consider
both the fine structure term and the Zeeman term as perturbations for the hydrogen atom.

• A perturbation Ĥ ′Z acts on a hydrogen atom with the unperturbed Hamiltonian Ĥ0 = − h̄2

2m∇
2 − e2

4πε0
1
r .

The Zeeman perturbation term in the Hamiltonian is

Ĥ ′Z =
e

2m
(~L+ 2~S) · ~Bext =

µBBext
h̄

(L̂z + 2Ŝz) (15)

in which ~Bext = Bextẑ.

4. In each degenerate subspace of Ĥ0, the off-diagonal matrix elements of Ĥ ′Z will be zero in a “good”
basis. Is a “good” angular basis for finding the corrections to the energies the coupled representation, the
uncoupled representation, or any arbitrary complete orthonormal basis found with linear combinations of
the coupled or uncoupled states with the same principal quantum number n? Explain.

Consider the following conversation regarding choosing a “good” basis when the perturbation is
Ĥ ′Z = µBBext

h̄ (L̂z + 2Ŝz).

Student 1: When a perturbation Ĥ ′Z = µBBext(L̂z + 2Ŝz) acts on a hydrogen atom, the uncoupled represen-
tation is a “good” angular basis for finding the first order corrections to the energies.
Student 2: I disagree. We can use either the coupled or the uncoupled representation to find the first order
corrections to the energies. Since ĴZ = L̂z + Ŝz, the perturbation Ĥ ′Z = µBBext(L̂z + 2Ŝz) is not much different

from ĴZ and so the coupled representation is also a “good” angular basis.
Student 3: I only agree with Student 1. ĴZ is diagonal in both the coupled and the uncoupled representation.
However, Ĥ ′ = µBBext(L̂z+2Ŝz) = µBBex(Ĵz+Ŝz) is not proportional to Ĵz. Therefore, Ĥ ′Z = µBBext(L̂z+2Ŝz)

is only diagonal in the uncoupled representation in which the basis states are eigenstates of L̂z and Ŝz.

Explain why you agree or disagree with each student.

(If you need further help with why L̂z + 2Ŝz is diagonal in the uncoupled representation and not the coupled
representation, refer to the Part I of this tutorial.)
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** Check your answer to question 4. **

4. The uncoupled representation forms a “good” basis for finding the corrections to the energies of the
hydrogen atom due to only the Zeeman term Ĥ ′Z .

If your answer to question 4 does not match with the checkpoint, go back and reconcile any differences.

6.9 First Order Corrections to the Energy Spectrum of the Hydrogen Atom in Perturbation Theory Due to
the Zeeman Term

Student 1 and Student 3 are correct in the preceding conversation in stating that the uncoupled representation
will form a “good” angular basis for Ĥ ′Z on Ĥ0.

5. What are the first order corrections to the energies due to the Zeeman term Ĥ ′Z using a “good” basis?

6. How many distinct energies does the n = 2 state split into when we take into account Ĥ ′Z as a perturbation

on Ĥ0? Explain. [Hint: How many possible values of ml + 2ms are there for n = 2?]
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** Check your answer to questions 5-6. **

5. The first order corrections to the energies due to only the Zeeman term Ĥ ′Z using a “good” basis (the
uncoupled representation) is given by

E′Z = µBBext(ml + 2ms) (16)

6. There are 5 distinct energies. For the n = 2 subspace, there are three possible values of ml (−1, 0, 1)
for l = 1 and one possible values of ml (0) for l = 0. For each value of l, there are two possible values of
ms (1

2 ,−
1
2).

l ml ms Energy (E′Z)

1

−1 1
2 0

−1 −1
2 −2µBBext

0 −1
2 −µBBext

0 1
2 µBBext

1 −1
2 0

1 1
2 2µBBext

0
0 −1

2 −µBBext
0 1

2 µBBext

If your answers to questions 5 and 6 do not match with the checkpoint, go back and reconcile any differences.

In one to two sentences, summarize what you have learned about the “good” states for finding the first order
corrections to the energy spectrum of the hydrogen atom due to only the Zeeman term Ĥ ′Z (pertaining to
whether the coupled representation, the uncoupled representation, or any arbitrary complete orthonormal basis
found with linear combinations of states with a fixed principal quantum number n in the coupled or uncoupled
representation form a “good” basis).
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Summary: Finding a “GOOD” Angular Basis for Various Perturbations on Ĥ0

• Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0 in the uncoupled representation.

– The basis states in the uncoupled representation are eigenstates of L̂z and Ŝz

• The uncoupled representation forms a “good” angular basis for finding the corrections to the energies due to the Zeeman pertrubation Ĥ ′Z .

Hamiltonian Uncoupled Is the Uncoupled Coupled Is the Coupled Is Any Arbitrary Complete Orthonormal Energy
Representation Representation Representation Representation Basis Constructed with Linear Combination
(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of States with the

Same n and l in the Coupled or Uncoupled
Representation a “Good” Basis?

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2

Ĥ ′r Diagonal Yes Diagonal Yes Yes E′r = − E2
n

2mc2

[
4n

l+1/2 − 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No E′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No E′fs = − E2
n

2mc2

[
4n

(j+1/2) − 3
]

Ĥ ′r + Ĥ ′SO

Ĥ ′Z Diagonal Yes Not Diagonal No No E′Z = µBext(ml + 2ms)
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III. Determining a “GOOD” Angular Basis and Corrections to the Energies
due to BOTH the Fine Structure and the Zeeman Perturbations Ĥ ′ = Ĥ ′fs+

Ĥ ′Z.
As we work through the remainder of the tutorial, we will fill in the following flowchart after each section
regarding the intermediate, strong, and weak field Zeeman effect.

Determining a “GOOD” Angular Basis and Corrections to the Energies due to

BOTH the Fine Structure and Zeeman Terms

Which term in Ĥ ′ = Ĥ ′fs + Ĥ ′Z is stronger?

Strong Field
Zeeman Effect

E′Z � E′fs
(Zeeman Term is Stronger)

Intermediate Field
Zeeman Effect

E′fs ≈ E′Z
(Both Terms are Comparable)

Weak Field
Zeeman Effect

E′fs � E′Z
(Fine Structure Term is Stronger)
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CASE 1: Intermediate Field Zeeman Effect (E′fs ≈ E′Z), when the fine structure term is compa-

rable to the Zeeman term in Ĥ ′)

6.10 Finding a “Good” Angular Basis for the Intermediate Field Zeeman Effect

Consider the following conversation regarding whether the coupled or uncoupled representation forms a “good”
angular basis for the intermediate field Zeeman effect (in order to find the first order corrections to the energies).
Student 1: In the intermediate field Zeeman effect, we must treat Ĥ ′fs and Ĥ ′Z on an equal footing. Does the
coupled or uncoupled representation form a “good” angular basis?
Student 2: Since the coupled representation is a “good” angular basis for the fine structure term and the
uncoupled representation is a “good” angular basis for the Zeeman term, both the coupled and uncoupled
representation form “good” angular bases and are equally appropriate to find the first order corrections to the
energies for Ĥ ′ = Ĥ ′fs + Ĥ ′Z .

Student 3: I disagree with Student 2. You cannot consider different bases for different parts of Ĥ ′. If we choose
the coupled representation, Ĥ ′ = Ĥ ′fs + Ĥ ′Z is not diagonal in each degenerate subspace of Ĥ0 since Ĥ ′Z is not

diagonal in the coupled representation. Similarly, if we choose the uncoupled representation, Ĥ ′ = Ĥ ′fs + Ĥ ′Z ,

is not diagonal in each degenerate subspace of Ĥ0 since Ĥ ′fs is not diagonal in the uncoupled representation.
Neither of these representations forms a “good” basis.

Explain why you agree or disagree with Student 2 or Student 3.

Consider the following conversation regarding whether to choose the coupled representation or uncoupled rep-
resentation as the angular basis for finding the corrections to the energies in the intermediate field Zeeman
effect.
Student 1: In the intermediate field Zeeman effect, neither the coupled nor uncoupled representation forms a
“good” angular basis. How do we determine the “good” angular basis?
Student 2: We can express Ĥ ′ = Ĥ ′fs + Ĥ ′Z initially in either the coupled or uncoupled representation, which

will not be a “good” angular basis. Then, a “good” angular basis is found by diagonalizing Ĥ ′ in each degener-
ate subspace of Ĥ0. Thus, the “good” angular basis states will be linear combinations of the originally chosen
angular basis states.

Do you agree with Student 2? Explain.
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The angular basis states for n = 2 are listed below in the coupled representation (left), and each state in the
coupled representation is given in terms of a linear combination of states in the uncoupled representation (right)
using the Clebsch-Gordon table (s = 1/2).

Coupled Representation Uncoupled Representation

|l, j, mj〉 |l, ml〉|s, ms〉

|ψ1〉
∣∣∣∣0, 1

2
,

1

2

〉
|0, 0〉

∣∣∣∣12 , 1

2

〉

|ψ2〉
∣∣∣∣0, 1

2
, −1

2

〉
|0, 0〉

∣∣∣∣12 , −1

2

〉

|ψ3〉
∣∣∣∣1, 3

2
,

3

2

〉
|1, 1〉

∣∣∣∣12 , 1

2

〉

|ψ4〉
∣∣∣∣1, 3

2
, −3

2

〉
|1, −1〉

∣∣∣∣12 , −1

2

〉

|ψ5〉
∣∣∣∣1, 3

2
,

1

2

〉 √
2

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1, 1〉

∣∣∣∣12 , −1

2

〉

|ψ6〉
∣∣∣∣1, 1

2
,

1

2

〉
−
√

1

3
|1, 0〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 1〉

∣∣∣∣12 , −1

2

〉

|ψ7〉
∣∣∣∣1, 3

2
, −1

2

〉 √
1

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
2

3
|1, 0〉

∣∣∣∣12 , −1

2

〉

|ψ8〉
∣∣∣∣1, 1

2
, −1

2

〉
−
√

2

3
|1, −1〉

∣∣∣∣12 , 1

2

〉
+

√
1

3
|1 0〉

∣∣∣∣12 , −1

2

〉

Using the table above, the perturbing Hamiltonian Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the coupled representation is given on

the next page, in which γ =
(
α
8

)2
13.6 eV, α = e2

4πε0h̄c
, β = µBBext and the angular basis states are chosen

in the order |ψ1〉 = |0, 1
2 ,

1
2〉, |ψ2〉 = |0, 1

2 , −
1
2〉, |ψ3〉 = |1, 3

2 ,
3
2〉, |ψ4〉 = |1, 3

2 , −
3
2〉, |ψ5〉 = |1, 3

2 ,
1
2〉,

|ψ6〉 = |1, 1
2 ,

1
2〉, |ψ7〉 = |1, 3

2 , −
1
2〉, and |ψ8〉 = |1, 1

2 , −
1
2〉:
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Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0
0 5γ + β 0 0 0 0 0 0
0 0 γ − 2β 0 0 0 0 0
0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3β

√
2

3 β 0 0

0 0 0 0
√

2
3 β 5γ − 1

3β 0 0

0 0 0 0 0 0 γ + 2
3β

√
2

3 β

0 0 0 0 0 0
√

2
3 β 5γ + 1

3β



Consider the following conversation regarding diagonalizing the Ĥ ′ = Ĥ ′fs+ Ĥ ′Z matrix in the n = 2 degenerate

subspace of Ĥ0 for the intermediate field Zeeman effect.
Student 1: In the case of n = 2, Ĥ0 possesses an eight-fold degeneracy, which means that in order to find a
“good” angular basis for the correction to the n = 2 energy spectrum, we must diagonalize the entire 8 x 8 Ĥ ′

matrix in the n = 2 degenerate subspace of Ĥ0.
Student 2: While it is true that we must diagonalize the Ĥ ′ matrix in the degenerate subspace of Ĥ0, we are
fortunate that the symmetry of the hydrogen atom yields many zero off-diagonal matrix elements. Therefore,
Ĥ ′ will be block diagonal in the degenerate subspaces of Ĥ0.
Student 3: I agree with Student 2. We must make an effort to diagonalize Ĥ ′ only in those block diagonal
subspaces with smaller dimensions than the original 8×8 Ĥ ′ matrix in order to diagonalize the entire Ĥ ′ matrix
in the degenerate subspace of Ĥ0 to obtain the “good” angular basis set.
Student 4: I agree with Student 1, Student 2, and Student 3. When I calculate the Ĥ ′ matrix for n = 2 in the
coupled representation and the angular basis states are chosen in the order |ψ1〉 = |0, 1

2 ,
1
2〉, |ψ2〉 = |0, 1

2 , −
1
2〉,

|ψ3〉 = |1, 3
2 ,

3
2〉, |ψ4〉 = |1, 3

2 , −
3
2〉, |ψ5〉 = |1, 3

2 ,
1
2〉, |ψ6〉 = |1, 1

2 ,
1
2〉, |ψ7〉 = |1, 3

2 , −
1
2〉, and |ψ8〉 = |1, 1

2 , −
1
2〉,

I get the block diagonal matrix Ĥ ′ below

Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0
0 5γ + β 0 0 0 0 0 0
0 0 γ − 2β 0 0 0 0 0
0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3β

√
2

3 β 0 0

0 0 0 0
√

2
3 β 5γ − 1

3β 0 0

0 0 0 0 0 0 γ + 2
3β

√
2

3 β

0 0 0 0 0 0
√

2
3 β 5γ + 1

3β


[ ]

[ ]

We will only need to diagonalize the 2× 2 matrices −

[
γ − 2

3β
√

2
3 β√

2
3 β 5γ − 1

3β

]
and −

[
γ + 2

3β
√

2
3 β√

2
3 β 5γ + 1

3β

]
to

obtain the “good” angular basis.

Explain why you agree or disagree with each student.
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6.11 First Order Corrections to the Energy Spectrum of the Hydrogen Atom in Perturbation Theory for the
Intermediate Field Zeeman Effect

Consider the following conversation regarding whether choosing the coupled representation or the uncoupled
representation as the initial angular basis and then carrying out a change of basis by diagonalizing Ĥ ′ in the
degenerate subspace of Ĥ0 affects the corrections to the energies in the intermediate field Zeeman effect.
Student 1: When calculating the first order corrections to the energies in the intermediate field Zeeman effect,
we can choose either the coupled or the uncoupled representation as the initial angular basis even if we know
it is not a “good” angular basis. Then, a “good” angular basis will be found by diagonalizing Ĥ ′ in each
degenerate subspace of Ĥ0. After diagonalizing Ĥ ′, the new basis is “good” and the first order corrections to
the energies are the diagonal matrix elements.
Student 2: I disagree. Since the diagonal matrix elements of Ĥ ′ will depend on the choice of initial basis, a
different choice of the initial basis in which we diagonalize Ĥ ′ in the degenerate subspace of Ĥ0 will change the
first order corrections to the energies.
Student 3: I disagree with Student 2. After diagonalizing Ĥ ′ in each degenerate subspace of Ĥ0, a “good”
basis is obtained and the first order correction to the energy will be the same regardless of which basis, e.g.,
the coupled or uncoupled representation, you had initially chosen. In a “good” basis, you will end up with the
same diagonal matrix elements of Ĥ ′ which are the first order corrections to the energies.

Explain why you agree or disagree with each student.

In one or two sentences, summarize what you have learned about the “good” angular basis states for finding
the first order corrections to the energy spectrum of the hydrogen atom due to the intermediate field Zeeman
effect (pertaining to whether the coupled representation, the uncoupled representation, or any arbitrary com-
plete orthonormal basis constructed with linear combinations of a complete set of states with a fixed principal
quantum number n in the coupled or uncoupled representation form a “good” angular basis).

Shortly, we shall calculate the first order corrections to the energies due to the intermediate field Zeeman ef-
fect. But before we do so, let’s first consider the limiting cases when one perturbation is stronger than the other.
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Review the following flowchart concerning a “good” angular basis and corrections to the energies for the
intermediate field Zeeman effect. Using the intermediate field Zeeman effect as a guide, attempt to fill in the
steps required to determine a “good” angular basis and corrections to the energies due to both the fine structure
(Ĥ ′fs) and Zeeman (Ĥ ′Z) terms for the strong field Zeeman effect (E′Z � E′fs) and the weak field Zeeman effect
(E′fs � E′Z). You can add or remove boxes in the flowchart if necessary.

Determining a “GOOD” Angular Basis and Corrections to the Energies due to

BOTH the Fine Structure and Zeeman Term

Which term in Ĥ ′ = Ĥ ′fs + Ĥ ′Z is stronger?

Strong Field
Zeeman Effect

E′Z � E′fs
(Zeeman Term is Stronger)

Intermediate Field
Zeeman Effect

E′fs ≈ E′Z
(Both Terms are Comparable)

Weak Field
Zeeman Effect

E′fs � E′Z
(Fine Structure Term is Stronger)

Neither the coupled nor the
uncoupled representation

form a “good” angular basis.

Choose either the coupled or the
uncoupled representation as the ini-
tial basis to write Ĥ ′ = Ĥ ′fs + Ĥ ′Z

(although neither is a “good” basis).

Diagonalize Ĥ ′ = Ĥ ′fs + Ĥ ′Z
in each degenerate subspace of
Ĥ0 to obtain a “good” basis.

In the “good” basis, the diagonal matrix
elements of Ĥ ′ = Ĥ ′fs + Ĥ ′Z are the
first order corrections to the energies.
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Summary: Finding a “GOOD” Angular Basis for the Intermediate Field Zeeman

Effect Ĥ ′ = Ĥ ′Z + Ĥ ′fs

• Neither the coupled nor the uncoupled representation forms a “good” angular basis when E′Z ≈ E′fs.

• To find a “good” angular basis for the intermediate field Zeeman effect E′Z ≈ E′fs:

– First choose either the coupled or the uncoupled representation as the basis.

– Diagonalize Ĥ ′ = Ĥ ′Z + Ĥ ′fs in each degenerate subspace of Ĥ0.

– The “good” basis will be a special linear combinations of the originally chosen basis set.
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6.12 Limiting Cases

Consider the following conversation regarding finding a “good” basis when treating the perturbation in two
steps.
Student 1: If we have a perturbation that has two terms in which one perturbation is stronger than the other,
we can first take into account the correction due to the stronger perturbation and then take into account the
weaker perturbation as a second perturbation.
Student 2: I agree. In the first step, we must find a “good” basis for Ĥ0 and Ĥ ′strong, so Ĥ ′strong must be

diagonal in each degenerate subspace of Ĥ0. Then in the second step, treat Ĥ0
strong = Ĥ0 + Ĥ ′strong as the

unperturbed Hamiltonian and Ĥ ′weak as perturbation on Ĥ0
strong = Ĥ0 + Ĥ ′strong. A “good” basis for step 2 is

one in which Ĥ ′weak is diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong.

Student 3: I disagree with Student 2. You cannot find one “good” basis for step 1 and a different “good”
basis for step 2.
Student 4: I agree with Student 1 and Student 2. It is approprate to use a two step perturbation theory when
one part of the perturbation is stronger than another if the error due to this two step process is negligible. If
the basis after step 1 is not a “good” basis for step 2, we would need to diagonalize Ĥ ′weak in each degenerate

subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong to find a “good” basis in step 2.

Explain why you agree or disagree with each student.

• Summary of Two-Step Approximation

– STEP 1: First consider only the stronger perturbation Ĥ ′strong as a perturbation on Ĥ0.

∗ Choose a basis in which Ĥ0 is diagonal and Ĥ ′strong is diagonal in each degenerate subspace of

Ĥ0.

∗ Determine the first order corrections to the energies E′strong due to the stronger perturbation

Ĥ ′strong.

– STEP 2: Consider the weaker perturbation Ĥ ′weak as a perturbation on the new unperturbed

Hamiltonian Ĥ0
strong = Ĥ0 + Ĥ ′strong.

∗ Treat as the new unperturbed Hamiltonian Ĥ0
strong = Ĥ0 + Ĥ ′strong.

∗ Treat E0
strong = E0 + E′strong as the new unperturbed energies.

∗ Determine the degeneracy of Ĥ0
strong = Ĥ0 + Ĥ ′strong (i.e., how many distinct states have the

same energy E0
strong,i).

∗ Determine if Ĥ ′weak is diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong.

· If Ĥ ′weak is already diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong then the

basis is “good” and the diagonal elements of Ĥ ′weak will give the corrections E′weak.

· If Ĥ ′weak is not diagonal in each degenerate subspace of Ĥ0
strong = Ĥ0 + Ĥ ′strong, diagonalize

Ĥ ′weak in each degenerate subspace of Ĥ0
strong to find a “good” basis.
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Consider the following conversation regarding approximating the corrections to the energy when one perturba-
tion is stronger than the other.
Student 1: When the hydrogen atom is placed in an external magnetic field, we must consider both the
Zeeman term and the fine structure term in the Hamiltonian as perturbations. Therefore, neither the coupled
nor the uncoupled representation form a “good” basis. We must diagonalize the entire Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix

in the degenerate subspace of Ĥ0.
Student 2: That is true. However, if one term is much stronger than the other, we can approximate the
first order corrections to the energy using perturbation theory in two steps. In the first step, consider only the
stronger perturbation. Then, as the second step, consider the weaker perturbation. This two-step approxima-
tion may simplify the process for finding a “good” basis and provide an alternative to diagonalizing the entire
Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix in each degenerate subspace of Ĥ0.
Student 3: I agree with Student 2. We will find that in the limiting case, the first order corrections to the ener-
gies obtained using this two-step approximation match with the first order corrections to the energies obtained
by diagonalizing the entire Ĥ ′ = Ĥ ′Z + Ĥ ′fs matrix in each degenerate subspace of Ĥ0 as in the intermediate
field Zeeman effect when we take the appropriate limit.

Explain why you agree or disagree with each student.

All the students are correct in the preceding conversation. However, we will focus on the limiting cases and use
the method described by Student 2 and Student 3.

• When E′Z � E′fs or E′fs � E′Z , we can use a two step approximation to find the first order corrections
to the energies of the hydrogen atom.

• Two-Step Approximation for the Strong and Weak Field Zeeman Effect

– CASE 2: Strong Field Zeeman Effect (E′Z � E′fs)

∗ The Zeeman term dominates.

· STEP 1: Treat only Ĥ ′Z as the perturbation on Ĥ0.

· STEP 2: Now, treat Ĥ ′fs as the perturbation on the new unperturbed Hamiltonian Ĥ0
Z =

Ĥ0 + Ĥ ′Z after the first step.

– CASE 3: Weak Field Zeeman Effect (E′fs � E′Z)

∗ The fine structure term dominates.

· STEP 1: Treat only Ĥ ′fs as the perturbation on Ĥ0.

· STEP 2: Now, treat Ĥ ′Z as the perturbation on the new unperturbed Hamiltonian Ĥ0
fs =

Ĥ0 + Ĥ ′fs after the first step.
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CASE 2: Strong Field Zeeman Effect: Perturbation Theory in Two Steps to Find the Corrections
to Energy Spectrum

6.12.1 Finding a “GOOD” Basis for the Strong Field Zeeman Effect in the Hydrogen Atom

STEP 1:
For the case E′Z � E′fs, in step 1, we treat only Ĥ ′Z as the perturbation on Ĥ0.

7. For the case E′Z � E′fs, what is a “good” angular basis for step 1 when we only consider Ĥ ′Z as pertur-
bation? Explain.

8. Write an expression for the first order corrections to the energies due to only the stronger perturbation
Ĥ ′Z acting on the unperturbed Hamiltonian Ĥ0 (once you have found a “good” basis). Here the first

order corrections are the exact results for the energies for the Hamiltonian Ĥ = Ĥ0 + Ĥ ′Z after STEP 1

since Ĥ0 and Ĥ ′Z commute (so Ĥ0 and Ĥ ′Z can be diagonalized simultaneously in a “good” basis).

STEP 2:
In the strong field when E′Z � E′fs, in step 2, the unperturbed Hamiltonian includes the Zeeman term and
becomes

Ĥ0
Z = Ĥ0 + Ĥ ′Z = − h̄2

2m
∇2 − e2

4πε0r
+

e

2m
Bext(L̂z + 2Ŝz). (17)

9. Is the Ĥ0
Z matrix a diagonal matrix if the coupled representation or the uncoupled representation is chosen

as the basis? Explain your reasoning. Your answer should be consistent with your response to question
7 above.

Now for the n = 2 subspace, take a look at the Ĥ0
Z = Ĥ0 + Ĥ ′Z and Ĥ ′fs matrices given below in which

E2 = −13.6eV
4 and the basis vectors are chosen in the uncoupled representation (|l, ml, ms〉) in the order

|ψ1〉 = |0, 0, 1
2〉, ψ2〉 = |1, 0, −1

2〉, |ψ3〉 = |1, 1, 1
2〉, |ψ4〉 = |1, 1, −1

2〉, |ψ5〉 = |1, 0, 1
2〉, |ψ6〉 = |1, 0, −1

2〉,
|ψ7〉 = |1, −1, 1

2〉, and |ψ8〉 = |1, −1, −1
2〉. Then answer questions 10-13 for the Strong field Zeeman effect.

Ĥ0
Z = Ĥ0 + Ĥ ′Z = −13.6eV

4



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


+ µBBext



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2
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Ĥ0
Z =



E2 + µBBext 0 0 0 0 0 0 0
0 E2 − µBBext 0 0 0 0 0 0
0 0 E2 + 2µBBext 0 0 0 0 0
0 0 0 E2 0 0 0 0
0 0 0 0 E2 + µBBext 0 0 0
0 0 0 0 0 E2 − µBBext 0 0
0 0 0 0 0 0 E2 0
0 0 0 0 0 0 0 E2 − 2µBBext


(18)

Ĥ ′fs = Ĥ ′r + Ĥ ′SO = Ĥ ′fs =
(−13.6 eV)α2

192



15 0 0 0 0 0 0 0
0 15 0 0 0 0 0 0
0 0 3 0 0 0 0 0

0 0 0 11 4
√

2 0 0 0

0 0 0 4
√

2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0
0 0 0 0 0 0 0 3


(19)

10. Determine the degeneracy in the energy eigenvalues of the “new” unperturbed Hamiltonian Ĥ0
Z = Ĥ0+Ĥ ′Z

after accounting for the stronger perturbation. Then circle the corresponding degenerate subspaces of
Ĥ0
Z = Ĥ0 + Ĥ ′Z (for the n = 2 subspace) in the preceding matrix representation in equation (18).

11. Identify the matrix elements of Ĥ ′fs in equation (19) that correspond to each degenerate subspace of

Ĥ0
Z = Ĥ0 + Ĥ ′Z in equation (18) and determine whether Ĥ ′fs is diagonal in each of these subspaces of Ĥ0

Z .

12. Determine whether the uncoupled representation chosen as the basis in question 9 is a “good” basis for
the unperturbed Hamiltonian Ĥ0

Z = Ĥ0 + Ĥ ′Z and the perturbation Ĥ ′fs. Explain how you made the
determination.
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** Check your answers to questions 7-10. **

7. The uncoupled representation forms a “good” basis when only the Zeeman term Ĥ ′Z is the perturbation

on the unperturbed Hamiltonian Ĥ0.
8. As we determined in equation (16), the first order corrections to the energies due to the Zeeman term
Ĥ ′Z in the uncoupled representation are E′Z = µBBext(ml + 2ms).

9. Ĥ0
Z = Ĥ0 + Ĥ ′Z is diagonal if the uncoupled representation is chosen as the basis.

10. Ĥ0
Z = Ĥ0 + Ĥ ′Z possesses three two-fold degeneracies (see equation 18) in the n = 2 subspace of Ĥ0.

There are two distinct states that share the new unperturbed energies E2 + µBext, E2 − µBext, and E2.
11. The perturbation Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0

Z = Ĥ0 + Ĥ ′Z treated as the
unperturbed Hamiltonian in step 2 of perturbation theory.
12. Yes. The uncoupled representation is a “good” angular basis in this case since Ĥ0

Z = Ĥ0 + Ĥ ′Z is

diagonal and Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z .

If your answers to questions 7-12 do not match with the checkpoint answers, go back and reconcile any differ-
ences.

For the following conversation, consider the n = 2 subspace for which the unperturbed Hamiltonian for the
strong field Zeeman effect is Ĥ0

Z = Ĥ0 + Ĥ ′Z after the first step for the strong field Zeeman effect (E′Z � E′fs).

Student 1: In the limit E′Z � E′fs, we can only take the Zeeman term Ĥ ′Z as the perturbation first when
we are using the two-step approximation. Then, after the first step, consider the unperturbed Hamiltonian as
Ĥ0
Z = Ĥ0 + Ĥ ′Z with unperturbed energies E0

n = En + µBext(ml + 2ms), and consider the degeneracy left in

E0
n to determine the degenerate subspaces of Ĥ0

Z . In the second step, treat the fine structure part Ĥ ′fs as the

perturbation on Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Student 2: What is the degeneracy left in the hydrogen atom energy spectrum when it is placed in a strong
external magnetic field after accounting for only the Zeeman term Ĥ ′Z as the perturbation in the first step?

Student 3: In the n = 2 subspace, the Ĥ0
Z = Ĥ0 + Ĥ ′Z matrix is the following if the basis states are chosen in

the uncoupled representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1
2〉, |ψ2〉 = |0, 0, −1

2〉,|ψ3〉 = |1, 1, 1
2〉,

|ψ4〉 = |1, 1, −1
2〉, |ψ5〉 = |1, 0, 1

2〉, |ψ6〉 = |1, 0, −1
2〉, |ψ7〉 = |1, −1, 1

2〉, and |ψ8〉 = |1, −1, −1
2〉

Ĥ0
Z =



E2 + µBBext 0 0 0 0 0 0 0

0 E2 − µBBext 0 0 0 0 0 0

0 0 E2 + 2µBBext 0 0 0 0 0

0 0 0 E2 0 0 0 0

0 0 0 0 E2 + µBBext 0 0 0

0 0 0 0 0 E2 − µBBext 0 0

0 0 0 0 0 0 E2 0

0 0 0 0 0 0 0 E2 − 2µBBext


.

Ĥ0
Z = Ĥ0 + Ĥ ′Z has three separate two-fold degeneracies for the energies E2 + µBBext, E2 − µBBext, and E2 as

indicated by the boxed, underlined, and circled matrix elements of Ĥ0
Z above.

Student 4: I agree with both Student 1 and Student 3. By considering the stronger perturbation Ĥ ′Z first,

some of the degeneracies are broken and the eight-fold degeneracy in the energy spectrum of Ĥ0 has become
three separate two-fold degeneracies plus two nondegenerate levels in the energy spectrum of Ĥ0

Z = Ĥ0 + Ĥ ′Z .

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the case E′Z � E′fs and treating the perturbation in two steps

with the stronger Zeeman term considered as part of the unperturbed Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z to find the

corrections due to the weaker perturbation Ĥ ′fs.
Student 1: Even in a two step process, how can we find a “good” basis easily when both the fine structure
term Ĥ ′fs and the Zeeman term Ĥ ′Z are present? The “good” basis is one in which there are no off-diagonal

matrix elements of Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the degenerate subspace of Ĥ0. Since Ĥ ′fs is diagonal in the coupled

representation and Ĥ ′Z is diagonal in the uncoupled representation, neither the coupled nor the uncoupled

representation could possibly form a “good” basis when we have Ĥ ′ = Ĥ ′Z + Ĥ ′fs.

Student 2: I agree. In step 1, when we only consider Ĥ ′Z as the perturbation on Ĥ0, we choose the uncoupled
representation as the “good” basis. Once the uncoupled representation is chosen as the “good” basis, we are
guaranteed to have off-diagonal matrix elements in the weaker fine structure perturbation matrix Ĥ ′fs. Thus,
the “good” basis for step 1 cannot be a “good” basis for step 2.
Student 3: Actually, once we treat the stronger Zeeman perturbation Ĥ ′Z in the first step, we lift some

of the degeneracy in the energy spectrum of Ĥ0. There is still degeneracy in the energy spectrum E0
n =

En + µBBext(ml + 2ms) after the first step, but now the degeneracy is present in smaller subspaces of Ĥ0. For
example, for the n = 2 subspace in step 2, Ĥ0

Z = Ĥ0 + Ĥ ′Z in the uncoupled representation is

Ĥ0
Z =



E2 + µBBext 0 0 0 0 0 0 0

0 E2 − µBBext 0 0 0 0 0 0

0 0 E2 + 2µBBext 0 0 0 0 0

0 0 0 E2 0 0 0 0

0 0 0 0 E2 + µBBext 0 0 0

0 0 0 0 0 E2 − µBBext 0 0

0 0 0 0 0 0 E2 0

0 0 0 0 0 0 0 E2 − 2µBBext


.

In the uncoupled representation, Ĥ ′fs is not diagonal in the entire n = 2 subspace, but it is diagonal in each

degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z . In the Ĥ ′fs matrix below, the elements of the degenerate subspace of

Ĥ0
Z corresponding to the degenerate energy E2 + µBBext are boxed. We see that Ĥ ′fs is diagonal in the 2× 2

subspace corresponding to the degenerate energy E2 + µBBext.

Ĥ ′fs =
(−13.6 eV)α2

192



15 0 0 0 0 0 0 0
0 15 0 0 0 0 0 0
0 0 3 0 0 0 0 0

0 0 0 11 4
√

2 0 0 0

0 0 0 4
√

2 7 0 0 0

0 0 0 0 0 7 4
√

2 0

0 0 0 0 0 4
√

2 11 0
0 0 0 0 0 0 0 3


.

Similarly, Ĥ ′fs is diagonal in the degenerate subspace of Ĥ0
Z for the degenerate energies E2 and E2 − µBBext.

Therefore, the uncoupled representation does form a “good” basis in this two step process.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding choosing the basis states in a different order to easily determine
a “good” basis for the strong field Zeeman effect (E′Z � E′fs).
Student 1: In the strong field Zeeman effect, for the n = 2 subspace, we chose basis states in the uncoupled
representation (|l, ml, ms〉) in the order |ψ1〉 = |0, 0, 1

2〉, |ψ2〉 = |0, 0, −1
2〉,|ψ3〉 = |1, 1, 1

2〉, |ψ4〉 = |1, 1, −1
2〉,

|ψ5〉 = |1, 0, 1
2〉, |ψ6〉 = |1, 0, −1

2〉, |ψ7〉 = |1, −1, 1
2〉, and |ψ8〉 = |1, −1, −1

2〉 to write the Ĥ0
Z = Ĥ0 + Ĥ ′Z

matrix in equation (18) and the Ĥ ′fs matrix in equation (19). Can we choose to write the basis states in a

different order to make the Ĥ0
Z = Ĥ0 + Ĥ ′Z matrix such that the degenerate eigenvalues along the diagonal are

adjacent? Doing so may make it easier to determine if we have a “good” basis.
Student 2: Yes. Suppose we choose the basis states in the order |ψ1〉 = |0, 0, 1

2〉, |ψ2〉 = |1, 0, 1
2〉, |ψ3〉 =

|0, 0, −1
2〉, |ψ4〉 = |1, 0, −1

2〉, |ψ5〉 = |1, 1, −1
2〉, |ψ6〉 = |1, −1, 1

2〉, |ψ7〉 = |1, 1, 1
2〉, and |ψ8〉 = |1, −1, −1

2〉,
then in the n = 2 subspace, the Ĥ0

Z = Ĥ0 + Ĥ ′Z matrix is

Ĥ0
Z =



E2 + µBBext 0 0 0 0 0 0 0

0 E2 + µBBext 0 0 0 0 0 0

0 0 E2 − µBBext 0 0 0 0 0

0 0 0 E2 − µBBext 0 0 0 0

0 0 0 0 E2 0 0 0

0 0 0 0 0 E2 0 0

0 0 0 0 0 0 E2 + 2µBBext 0

0 0 0 0 0 0 0 E2 − 2µBBext


.

(20)
The degenerate subspaces of Ĥ0

Z = Ĥ0 + Ĥ ′Z are boxed. Each degenerate subspace of Ĥ0
Z is diagonal. Student

3: I agree with Student 2. In order to determine if the “good” basis for step 1 is also a “good” basis for step
2, we must check that Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0

Z = Ĥ0 + Ĥ ′Z . When basis states are

chosen in the order |φ1〉 = |0, 0, 1
2〉, |φ2〉 = |1, 0, 1

2〉, |φ3〉 = |0, 0, −1
2〉, |φ4〉 = |1, 0, −1

2〉, |φ5〉 = |1, 1, −1
2〉,

|φ6〉 = |1, −1, 1
2〉, |φ7〉 = |1, 1, 1

2〉, and |φ8〉 = |1, −1, −1
2〉, the Ĥ ′fs matrix is

Ĥ ′fs =
(−13.6eV)α2

192



15 0 0 0 0 0 0 0

0 7 0 0 4
√

2 0 0 0

0 0 15 0 0 0 0 0

0 0 0 7 0 4
√

2 0 0

0 4
√

2 0 0 11 0 0 0

0 0 0 4
√

2 0 11 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 3


(21)

Now we can more easily see that Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Student 4: I disagree with Student 2 and Student 3. We are not permitted to write the basis states in any
order we choose. If we change the order of the basis states, we change the first order corrections to the energies.
Since the first order corrections to the energies are the diagonal matrix elements of the perturbation in a “good”
basis, writing the basis states in a different order will produce incorrect first order corrections to the energies.
Student 3: No! Reordering the basis states just changes the order in which the unperturbed energies and their
corrections appear, but corrections to each unperturbed energy will be the same. Remember that we need to
reorder both Ĥ0

Z and Ĥ ′fs matrices since the basis vectors must be chosen in the same order for all matrices.

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the off-diagonal matrix elements of Ĥ ′fs in each degenerate
subspace of Ĥ0

Z in the strong field Zeeman effect (E′Z � E′fs).

Student 1: Since Ĥ ′Z is diagonal in the uncoupled representation and Ĥ ′fs is diagonal in the coupled repre-
sentation, we were fortunate that after the first step in our two-step approximation, the off-diagonal matrix
elements of Ĥ ′fs were zero in each degenerate subspace of Ĥ0

Z = Ĥ0 + Ĥ ′Z in the uncoupled representation after
step 1.
Student 2: I agree with Student 1. Considering Ĥ0

Z = Ĥ0 + Ĥ ′Z as the new unperturbed Hamiltonian after

the first step, the stronger perturbation Ĥ ′Z breaks some of the degeneracy in the energy spectrum of Ĥ0. In
the second step in perturbation theory, the non-zero off-diagonal matrix elements of the weaker perturbation
Ĥ ′fs are NOT in each degenerate subspace of Ĥ0

Z = Ĥ0 + Ĥ ′Z when we consider the unperturbed Hamiltonian

Ĥ0
Z = Ĥ0 + Ĥ ′Z and the uncoupled representation as the basis.

Student 3: You are correct. We got lucky! After the first step, if the off-diagonal matrix elements of the
weaker perturbation Ĥ ′fs were not zero in one or more of the degenerate subspaces of Ĥ0

Z = Ĥ0 + Ĥ ′Z , we would

need to determine the “good” basis by diagonalizing Ĥ ′fs in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z in the

second step. The uncoupled representation would not have been a “good” basis.

Explain why you agree or disagree with each student.

6.12.2 Finding Corrections to the Energies for the Strong Field Zeeman Effect

After the first step, the unperturbed Hamiltonian including the Zeeman term is

Ĥ0
Z = Ĥ0 + Ĥ ′Z = − h̄2

2m
∇2 − e2

4πε0r
+

e

2m
Bext(Lz + 2Sz) (22)

and the corresponding unperturbed energies are

E0
Z = −13.6eV

n2
+ µBBext(ml + 2ms) (23)

13. After step 2, find one of the first order corrections to the energies due to the weaker perturbation Ĥ ′fs for
the hydrogen atom placed in a strong external magnetic field for the n = 2 subspace.
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** Check your answers to question 13. **

13. The first order corrections to the energies due to the fine structure term for the hydrogen atom placed
in a strong external magnetic field for the n = 2 subspace are the diagonal elements of Ĥ ′fs in equation
(21).

E′1 =
(−13.6 eV)α2

192
(15) E′2 =

(−13.6 eV)α2

192
(7)

E′3 =
(−13.6 eV)α2

192
(15) E′4 =

(−13.6 eV)α2

192
(7)

E′5 =
(−13.6 eV)α2

192
(11) E′6 =

(−13.6 eV)α2

192
(11)

E′7 =
(−13.6 eV)α2

192
(3) E′8 =

(−13.6 eV)α2

192
(3)

If your answers to question 13 do not match with the checkpoint answers, go back and reconcile any differences.

In one to two sentences, summarize what you have learned about the “good” angular basis states for finding
the first order corrections to the energy spectrum of the hydrogen atom due to the strong field Zeeman effect
(pertaining to whether the coupled representation, the uncoupled representation, or any arbitrary complete
orthonormal basis constructed with linear combinations of states with a fixed principal quantum number n in
the coupled or uncoupled representation form a “good” angular basis).
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Summary: Finding a “GOOD” Angular Basis for the Strong Field Zeeman Effect (E′Z � E′fs)

• We can use a two step process in perturbation theory to find corrections to the hydrogen atom energy
spectrum when E′Z � E′fs.

Step 1: Treat the stronger perturbation Ĥ ′Z as a perturbation on the unperturbed Hamiltonian Ĥ0.

– Ĥ ′Z is diagonal in the uncoupled representation.

Step 2: Treat the fine structure part of the Hamiltonian, Ĥ ′fs, as a perturbation on the new unperturbed

Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z .

– In the uncoupled representation, Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z

(even though Ĥ ′fs has off-diagonal matrix elements in the uncoupled representation, they are not in

each degenerate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z).

• The uncoupled representation forms a “good” angular basis for finding the corrections to the energies.

Review the following flowchart concerning the “good” basis and how to find the corrections to the energies for
the intermediate and strong field Zeeman effect. Using the intermediate and strong field Zeeman effect as a
guide, attempt to fill in the steps required to determine a “good” basis and corrections to the energies due to
both the fine structure (Ĥ ′fs) and Zeeman (Ĥ ′Z) terms for the the weak field Zeeman effect (E′fs � E′Z). You
may add or remove boxes in the flowchart if necessary.
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Determining a “GOOD” Angular Basis and Corrections to the Energies due to

BOTH the Fine Structure and Zeeman Effect

Which term in Ĥ ′ = Ĥ ′fs + Ĥ ′Z is stronger?

Strong Field
Zeeman Effect

E′Z � E′fs
(Zeeman Term is Stronger)

Intermediate Field
Zeeman Effect

E′fs ≈ E′Z
(Both Terms are Comparable)

Weak Field
Zeeman Effect

E′fs � E′Z
(Fine Structure Term is Stronger)

STEP 1: Treat Ĥ ′Z as

a perturbation on Ĥ0.

Ĥ ′Z is diagonal in the un-
coupled representation.

STEP 2: Consider Ĥ ′ = Ĥ ′fs as
a perturbation on the unperturbed

Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Ĥ ′fs is diagonal in each degener-

ate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z

in the uncoupled representation.

The uncoupled representation
forms a “good” angular basis.

In the uncoupled representation, the
diagonal matrix elements of Ĥ ′fs are the

first order corrections to the energies

Neither the coupled nor the
uncoupled representation

forms a “good” angular basis.

Choose either the coupled or the
uncoupled representation as the initial

basis to write Ĥ ′ = Ĥ ′fs + Ĥ ′Z (although
neither is a “good” angular basis).

Diagonalize Ĥ ′ = Ĥ ′fs + Ĥ ′Z in

each degenerate subspace of Ĥ0

to obtain a “good” angular basis.

In the “good” basis, the diagonal matrix
elements of Ĥ ′ = Ĥ ′fs + Ĥ ′Z are the
first order corrections to the energies.
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CASE 3: Weak Field Zeeman Effect: Perturbation Theory in Two Steps to Find the Corrections
to the Energy Spectrum

6.12.3 Finding a “GOOD” Basis for the Weak Field Zeeman Effect (E′fs � E′Z)

STEP 1:
In step 1, for the case E′fs � E′Z , we treat only Ĥ ′fs as the perturbation on Ĥ0.

14. For the case E′fs � E′Z , what is the “good” angular basis for step 1 when we ignore Ĥ ′Z? Explain.

15. Write an expression for the first order corrections to the energies due to the stronger perturbation Ĥ ′fs.

STEP 2:
In the weak field when E′fs � E′Z , in step two, the unperturbed Hamiltonian including the fine structure term
becomes

Ĥ0
fs = − h̄2

2m
∇2 − e2

4πε0r
− p̂4

8m3c2
+

(
e2

8πε0

)
1

m2c2r3
~S · ~L. (24)

16. For Ĥ0
fs = Ĥ0 + Ĥ ′fs, is Ĥ0

fs diagonal if the angular basis is chosen to be the coupled representation,
uncoupled representation, or neither? Explain your reasoning.

Now for the n = 2 subspace, take a look at the Ĥ0
fs = Ĥ0 + Ĥ ′fs and Ĥ ′Z matrices given below in the coupled

representation (|l, j, mj〉) in which E2 = −13.6eV
4 and the basis states are chosen in the order |Φ1〉 = |1, 3

2 ,
3
2〉,

|Φ2〉 = |1, 3
2 ,

1
2〉, |Φ3〉 = |1, 3

2 , −
1
2〉, |Φ4〉 = |1, 3

2 , −
3
2〉, |Φ5〉 = |1, 1

2 ,
1
2〉, |Φ6〉 = |1, 1

2 , −
1
2〉, |Φ7〉 = |0, 1

2 ,
1
2〉

and |Φ8〉 = |0, 1
2 , −

1
2〉. Then, answer questions 16-20 for the weak field Zeeman effect.

Ĥ0
fs = Ĥ0 + Ĥ ′fs

Ĥ0
fs = E2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


+

E2
2

mc2



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −5 0 0 0
0 0 0 0 0 −5 0 0
0 0 0 0 0 0 −5 0
0 0 0 0 0 0 0 −5
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Ĥ0
fs =



E2 −
E2

2
mc2

0 0 0 0 0 0 0

0 E2 −
E2

2
mc2

0 0 0 0 0 0

0 0 E2 −
E2

2
mc2

0 0 0 0 0

0 0 0 E2 −
E2

2
mc2

0 0 0 0

0 0 0 0 E2 −
5E2

2
mc2

0 0 0

0 0 0 0 0 E2 −
5E2

2
mc2

0 0

0 0 0 0 0 0 E2 −
5E2

2
mc2

0

0 0 0 0 0 0 0 E2 −
5E2

2
mc2


(25)

Ĥ ′Z = µBBext



2 0 0 0 0 0 0 0

0 2
3 0 0 −

√
2

3 0 0 0

0 0 −2
3 0 0 −

√
2

3 0 0
0 0 0 −2 0 0 0 0

0 −
√

2
3 0 0 1

3 0 0 0

0 0 −
√

2
3 0 0 −1

3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


(26)

17. In step 2, determine the degeneracy of the “new” unperturbed Hamiltonian Ĥ0
fs = Ĥ0+Ĥ ′fs after account-

ing for the stronger perturbation and circle the corresponding degenerate subspaces in Ĥ0
fs = Ĥ0 + Ĥ ′fs

for the n = 2 subspace in the preceding matrix representation in equation (25).

18. Identify the matrix elements of Ĥ ′Z in equation (26) that correspond to each degenerate subspace of

Ĥ0
fs = Ĥ0 + Ĥ ′fs in equation (25) and determine whether Ĥ ′Z is diagonal in each of these subspaces of

Ĥ0
fs

19. Determine whether the basis chosen in question 16 is a “good” angular basis for the unperturbed Hamil-
tonian Ĥ0

fs = Ĥ0 + Ĥ ′fs and the perturbation Ĥ ′Z . Explain how you made the determination.
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** Check your answers to questions 14-19. **

14. The coupled representation forms a “good” basis when only the fine structure term Ĥ ′fs is the

perturbation on the unperturbed Hamiltonian Ĥ0

15. As we determined in equation (14), the first order corrections to the energies due to the fine structure

term Ĥ ′fs in the coupled representation are E′fs =
E2
n

mc2

[
3− 4n

j + 1/2

]
.

16. For a fixed n, Ĥ0
fs = Ĥ0 + Ĥ ′fs is diagonal in each degenerate subspace of Ĥ0 if the coupled

representation is chosen as the angular basis.
17. Ĥ0

fs = Ĥ0 + Ĥ ′fs possesses two four-fold degeneracies in the n = 2 subspace. There are four distinct

states that share the new unperturbed energies E2 −
5E2

2
mc2

and E2 −
E2

2
mc2

.

18. The perturbation Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs treated as the

unperturbed Hamiltonian in step 2 of perturbation theory.
19. Yes. The coupled representation is a “good” angular basis. In the second step, the new perturbation
term Ĥ0

fs = Ĥ0 + Ĥ ′fs is diagonal in the coupled representation for a fixed n and the perturbation Ĥ ′Z is

diagonal in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs.

If your answers to questions 14-19 do not match with the checkpoint, go back and reconcile any differences.
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Consider the following conversation regarding the weak field Zeeman effect (E′fs � E′Z) and finding a “good”
basis for the two-step process in the weak field Zeeman effect (E′fs � E′Z).

Student 1: Since Ĥ ′Z = µBBext(L̂z + 2Ŝz), we cannot use the coupled representation as the angular basis. Ĥ ′Z
is not diagonal in the coupled representation. To find the first order corrections to the energies, we must use
the uncoupled representation since Ĥ ′Z is diagonal in the uncoupled representation.
Student 2: I don’t see how either the coupled or uncoupled representation form a “good” angular basis when
we have both Ĥ ′fs and Ĥ ′Z . They simply cannot be diagonalized simultaneously in either basis. We must choose
linear combinations of the states in the coupled or uncoupled representation so that the basis diagonalizes the
sum of Ĥ ′fs and Ĥ ′Z in each degenerate subspace of Ĥ0.
Student 3: I agree with Student 2 only for the intermediate field Zeeman effect with E′fs ≈ E′Z . In the
weak field Zeeman effect in which E′fs � E′Z , we can use the two step approximation by considering only the

stronger perturbation Ĥ ′fs in the first step. In the second step, we consider the “new” unperturbed Hamiltonian

Ĥ0
fs = Ĥ0 + Ĥ ′fs and the perturbation Ĥ ′Z . If the coupled representation is chosen as the angular basis, then in

the n = 2 subspace, the Ĥ0
fs = Ĥ0 + Ĥ ′fs matrix is (the basis vectors are chosen the same order as in questions

17-19):

Ĥ0
fs =



E2 −
E2

2
mc2

0 0 0 0 0 0 0

0 E2 −
E2

2
mc2

0 0 0 0 0 0

0 0 E2 −
E2

2
mc2

0 0 0 0 0

0 0 0 E2 −
E2

2
mc2

0 0 0 0

0 0 0 0 E2 −
5E2

2
mc2

0 0 0

0 0 0 0 0 E2 −
5E2

2
mc2

0 0

0 0 0 0 0 0 E2 −
5E2

2
mc2

0

0 0 0 0 0 0 0 E2 −
5E2

2
mc2


Student 4: I agree with Student 3. Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0

fs = Ĥ0 + Ĥ ′fs shown
for the n = 2 subspace in the following matrix. Therefore, the coupled representation is a “good” basis in the
limit E′fs � E′Z . When we use a two step process in the limit E′fs � E′Z , some degeneracy is lifted in the first
step.

Ĥ ′Z = µBBext



2 0 0 0 0 0 0 0

0 2
3 0 0 −

√
2

3 0 0 0

0 0 −2
3 0 0 −

√
2

3 0 0

0 0 0 −2 0 0 0 0

0 −
√

2
3 0 0 1

3 0 0 0

0 0 −
√

2
3 0 0 −1

3 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



. (27)

Explain why you agree or disagree with each student.
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Consider the following conversation regarding the off-diagonal matrix elements of Ĥ ′Z in the degenerate sub-

space of Ĥ0
fs in the weak field Zeeman effect (E′fs � E′Z).

Student 1: Since Ĥ ′Z is diagonal in the uncoupled representation and Ĥ ′fs is diagonal in the coupled represen-
tation for a fixed n, we were fortunate that, after the first step in our approximation, the off-diagonal matrix
elements of Ĥ ′Z are zero in each degenerate subspace of Ĥ0

fs = Ĥ0 + Ĥ ′fs.

Student 2: I agree with Student 1. The stronger perturbation Ĥ ′fs breaks some of the degeneracy in the

energy spectrum of Ĥ0. When we consider Ĥ0
fs = Ĥ0 + Ĥ ′fs as the new unperturbed Hamiltonian in step 2,

the non-zero off-diagonal matrix elements of Ĥ ′Z are not in the degenerate subspaces of Ĥ0
fs = Ĥ0 + Ĥ ′fs.

Student 3: You are correct. We got lucky! In step 2, if the off-diagonal matrix elements of the weaker
perturbation Ĥ ′Z were non-zero in any of the degenerate subspaces of Ĥ0

fs = Ĥ0 + Ĥ ′fs, we would have needed

to determine the “good” basis by diagonalizing Ĥ ′Z in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs that is not

diagonal already after the first step.

Explain why you agree or disagree with each student.

6.12.4 Finding Corrections to the Energies for the Weak Field Zeeman Effect (E′fs � E′Z)

After the first step, the unperturbed Hamiltonian including the fine structure term is

Ĥ0
fs = − h̄2

2m
∇2 − e2

4πε0r
− p̂4

8m3c2
+

(
e2

8πε0

)
1

m2c2r3
~S · ~L (28)

and the corresponding unperturbed energies are

Enjmj = −13.6eV

n2
+

E2
n

mc2

[
3− 4n

j + 1/2

]
(29)

20. After step 2, find one of the first order corrections to the energies due to the weaker perturbation Ĥ ′Z for
the hydrogen atom placed in a weak external magnetic field for the n = 2 subspace.
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** Check your answers to question 20. **

20. The first order corrections to the energies due to the Zeeman term only for the hydrogen atom placed
in a weak external magnetic field for the n = 2 subspace are the diagonal elements of Ĥ ′Z in equation (27)

E′1 = 2µBBext
E′2 = 2

3µBBext
E′3 = −2

3µBBext
E′4 = −2µBBext
E′5 = 1

3µBBext
E′6 = −1

3µBBext
E′7 = µBBext
E′8 = −µBBext

If your answer to question 20 does not match with the checkpoint, go back and reconcile any differences.

In one to two sentences, summarize what you have learned about the “good” angular basis for finding the first
order corrections to the energy spectrum of the hydrogen atom due to the weak field Zeeman effect (pertaining
to whether the coupled representation, the uncoupled representation, or any arbitrary complete orthonormal
basis constructed with linear combinations of states with a fixed principal quantum number n in the coupled
or uncoupled representation form a “good” angular basis).

44



Summary: Finding a “GOOD” Angular Basis for the Weak Field Zeeman Effect (E′fs � E′Z)

• We can use a two step process for perturbation theory to find the corrections to the hydrogen atom energy
spectrum for E′fs � E′Z .

Step 1: Treat the stronger perturbation Ĥ ′fs as the entire perturbation on the unperturbed Hamiltonian Ĥ0.

– Ĥ ′fs is diagonal in the coupled representation for a fixed n (in each degenerate subspace of Ĥ0).

Step 2: Treat the Zeeman part of the Hamiltonian, Ĥ ′Z , as the perturbation on the new unperturbed Hamil-

tonian Ĥ0
fs = Ĥ0 + Ĥ ′fs.

– In the coupled representation, Ĥ ′Z is diagonal in each degenerate subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs

(even though Ĥ ′Z has off-diagonal matrix elements in the coupled representation, they are not in the

degenerate subspaces of Ĥ0
fs = Ĥ0 + Ĥ ′fs).

– See equation (26) as an example for the n = 2 subspace.

• The coupled representation forms a “good” angular basis for finding the corrections to the energies.

Fill in the following flowchart concerning a “good” angular basis and how to find the corrections to the energies
for the intermediate (E′fs ≈ E′Z), strong (E′Z � E′fs), and weak field Zeeman effect (E′fs � E′Z).
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Determining a “GOOD” Angular Basis and Corrections to the Energies Due to

BOTH the Fine Structure and Zeeman Effect

Which term in Ĥ ′ = Ĥ ′fs + Ĥ ′Z is stronger?

Strong Field
Zeeman Effect

E′Z � E′fs
(Zeeman Term is Stronger)

Intermediate Field
Zeeman Effect

E′fs ≈ E′Z
(Both Terms are Comparable)

Weak Field
Zeeman Effect

E′fs � E′Z
(Fine Structure Term is Stronger)
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Determining a “GOOD” Angular Basis and Corrections to the Energies Due to

BOTH the Fine Structure and Zeeman Effect

Which term in Ĥ ′ = Ĥ ′fs + Ĥ ′Z is stronger?

Strong Field
Zeeman Effect

E′Z � E′fs
(Zeeman Term is Stronger)

Intermediate Field
Zeeman Effect

E′fs ≈ E′Z
(Both Terms are Comparable)

Weak Field
Zeeman Effect

E′fs � E′Z
(Fine Structure Term is Stronger)

STEP 1: Treat Ĥ ′Z as

a perturbation on Ĥ0.

Ĥ ′Z is diagonal in the un-
coupled representation.

STEP 2: Consider Ĥ ′ = Ĥ ′fs as
a perturbation on the unperturbed

Hamiltonian Ĥ0
Z = Ĥ0 + Ĥ ′Z .

Ĥ ′fs is diagonal in each degener-

ate subspace of Ĥ0
Z = Ĥ0 + Ĥ ′Z

in the uncoupled representation.

The uncoupled representation
forms a “good” angular basis.

In the uncoupled representation, the
diagonal matrix elements of Ĥ ′fs are the

first order corrections to the energies

STEP 1: Treat Ĥ ′fs as

a perturbation on Ĥ0.

Ĥ ′fs is diagonal in the coupled
representation for a fixed n.

STEP 2: Consider Ĥ ′ = Ĥ ′Z as a
perturbation on the unperturbed
Hamiltonian Ĥ0

fs = Ĥ0 + Ĥ ′fs.

Ĥ ′Z is diagonal in each degenerate

subspace of Ĥ0
fs = Ĥ0 + Ĥ ′fs

in the coupled representation.

The coupled representation
forms a “good” angular basis.

In the coupled representation, the
diagonal matrix elements of Ĥ ′Z are the

first order corrections to the energies

Neither the coupled nor the
uncoupled representations

form a “good” angular basis.

Choose either the coupled or the
uncoupled representation as the ini-
tial basis to write Ĥ ′ = Ĥ ′fs + Ĥ ′Z

(although neither is a “good” basis).

Diagonalize Ĥ ′ = Ĥ ′fs + Ĥ ′Z
in each degenerate subspace of
Ĥ0 to obtain a “good” basis.

In the “good” basis, the diagonal matrix
elements of Ĥ ′ = Ĥ ′fs + Ĥ ′Z are the
first order corrections to the energies.
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Fill in the following table for the Strong Field Zeeman Effect.

Strong Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/
or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction
in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)
Representation? Basis? Representation? Basis?
(for a fixed n) (for a fixed n)

Step 1

Unperturbed

Ĥ0

Perturbation

Ĥ ′Z

Step 2

Unperturbed

Ĥ0
Z = Ĥ0 + Ĥ ′Z

Perturbation

Ĥ ′fs
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Fill in the following table for the Weak Field Zeeman Effect.

Weak Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/
or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction
in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)
Representation? Basis? Representation? Basis?
(for a fixed n) (for a fixed n)

Step 1

Unperturbed

Ĥ0

Perturbation

Ĥ ′fs

Step 2

Unperturbed

Ĥ0
fs = Ĥ0 + Ĥ ′fs

Perturbation

Ĥ ′Z
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** Check your answers to questions in the preceding tables.**

Strong Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/
or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction
in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)
Representation? Basis? Representation? Basis?
(for a fixed n) (for a fixed n)

Step 1
Unperturbed Diagonal Yes, because Diagonal E0 = −13.6eV

n2

Ĥ0 Ĥ ′Z is diagonal No, because

in each degenerate Ĥ ′Z is not diagonal

subspace of Ĥ0. in each degenerate

Perturbation Diagonal (actually both Ĥ0 Non-Diagonal subspace of Ĥ0. E′Z = µBBext(ml + 2ms)

Ĥ ′Z and Ĥ ′Z can be
diagonalized

simultaneously

since [Ĥ0, Ĥ ′Z ] = 0).

Step 2

Unperturbed Diagonal Non-Diagonal E0
Z = E0 + E′Z

Ĥ0
Z = Ĥ0 + Ĥ ′Z Yes, because No, because = E0 + µBBext(ml + 2ms)

Ĥ ′fs is diagonal Ĥ ′Z is not diagonal

in each degenerate in each degenerate

Perturbation Non-diagonal subspace of Diagonal subspace of Ĥ0. Use Clebsch-Gordon table

Ĥ ′fs Ĥ0
Z = Ĥ0 + Ĥ ′Z . table to express uncoupled states

in the coupled basis
to determine E′fs.
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Weak Field Zeeman Effect

Hamiltonian Is the Matrix Diagonal Is the Uncoupled Is the Matrix Diagonal Is the Coupled Energy/
or Non-Diagonal Representation or Non-Diagonal Representation Energy Correction
in the Uncoupled a “Good” in the Coupled a “Good” (Using the “Good” Basis)
Representation? Basis? Representation? Basis?
(for a fixed n) (for a fixed n)

Step 1
Unperturbed Diagonal Diagonal E0 = −13.6eV

n2

Ĥ0 No, because Yes, because

Ĥ ′fs is not diagonal Ĥ ′fs is diagonal

in each degenerate in each degenerate

Perturbation Non-Diagonal subspace of Ĥ0. Diagonal subspace of Ĥ0.

Ĥ ′fs E′fs = E2
n

2mc2

[
3− 4n

(j+1/2)

]

Step 2

Unperturbed Non-Diagonal Diagonal E0
fs = E0 + E′fs

Ĥ0
fs = Ĥ0 + Ĥ ′fs No, because Yes, because = E0 − E2

n
2mc2

[
4n

(j+1/2) − 3
]

Ĥ ′fs is not diagonal Ĥ ′Z is diagonal

in each degenerate in each degenerate

Perturbation Diagonal subspace of Ĥ0. Non-Diagonal subspace of Use Clebsch-Gordon

Ĥ ′Z Ĥ0
fs = Ĥ0 + Ĥ ′fs. table to express coupled states

in the uncoupled basis
to determine E′Z
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Summary: Finding a “GOOD” Basis for the Zeeman Effect in the Hydrogen Atom

• Intermediate Field Zeeman Effect (E′Z ≈ E′fs)

– Neither the coupled nor the uncoupled representation forms a “good” basis for finding corrections
to the energies.

– One needs to diagonalize Ĥ ′ = Ĥ ′Z + Ĥ ′fs in each degenerate subspace of Ĥ0 explicitly to find the
“good” basis.

• Strong Field Zeeman Effect (E′Z � E′fs)

– We can carry out perturbation theory in two steps.

– The uncoupled representation forms a “good” basis for finding corrections to the energies.

• Weak Field Zeeman Effect (E′fs � E′Z)

– We can carry out perturbation theory in two steps.

– The coupled representation forms a “good” basis for finding corrections to the energies.
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Hamiltonian Uncoupled Is Uncoupled Coupled Is Coupled Is Any ArbitraryComplete Orthonormal Unperturbed First Order
Representation Representation Representation Representation Basis Found with Linear Combinations Energy Correction to
(for a fixed n) a “Good” Basis? (for a fixed n) a “Good” Basis? of a Complete Set of the Coupled the Energy

or Uncoupled States a “Good” Basis?
(with the same n and l)

Ĥ0 Diagonal — Diagonal — — En = −13.6eV
n2 -

Ĥ ′r Diagonal Yes Diagonal Yes Yes En E′r = − E2
n

2mc2

[
4n

l+1/2 − 3
]

Ĥ ′SO Not Diagonal No Diagonal Yes No En E′SO = E2
n

mc2

[
n(j(j+1)−l(l+1−3/4))

l(l+1)(l+1/2)

]

Ĥ ′fs = Not Diagonal No Diagonal Yes No En E′fs = − E2
n

2mc2

[
4n

(j+1/2) − 3
]

Ĥ ′r + Ĥ ′SO

Ĥ ′Z Diagonal Yes Not Diagonal No No En E′Z = µBext(ml + 2ms)

Ĥ0
Z= Diagonal Yes Not Diagonal No No En + µBext(ml + 2ms) Diagonal matrix elements of

Ĥ0 + Ĥ ′Z Ĥ ′fs in the uncoupled representation

Ĥ0
fs= Not Diagonal No Diagonal Yes No En + E2

n
2mc2

[
3− 4n

(j+1/2)

]
Diagonal matrix elements of

Ĥ0 + Ĥ ′fs Ĥ ′Z in the coupled representation
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7 Finding First Order Energy Corrections for the Intermediate Field Zeeman Effect Con-
tinued

Reconsider the following perturbing Hamiltonian Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the coupled representation (|l, j, mj〉)
when E′fs ≈ E′Z .

Ĥ ′ = −



5γ − β 0 0 0 0 0 0 0
0 5γ + β 0 0 0 0 0 0
0 0 γ − 2β 0 0 0 0 0
0 0 0 γ + 2β 0 0 0 0

0 0 0 0 γ − 2
3β

√
2

3 β 0 0

0 0 0 0
√

2
3 β 5γ − 1

3β 0 0

0 0 0 0 0 0 γ + 2
3β

√
2

3 β

0 0 0 0 0 0
√

2
3 β 5γ + 1

3β


(30)

in which γ =
(
α
8

)2
13.6 eV, α = e2

4πε0h̄c
, β = µBBext and the basis states are chosen in the order of |ψ1〉 =

|0, 1
2 ,

1
2〉, |ψ2〉 = |0, 1

2 , −
1
2〉, |ψ3〉 = |1, 3

2 ,
3
2〉, |ψ4〉 = |1, 3

2 , −
3
2〉, |ψ5〉 = |1, 3

2 ,
1
2〉, |ψ6〉 = |1, 1

2 ,
1
2〉,

|ψ7〉 = |1, 3
2 , −

1
2〉, and |ψ8〉 = |1, 1

2 , −
1
2〉.

21. Explain in words how to find a “good” basis and corrections to the energies for the intermediate field
Zeeman effect (E′fs ≈ E′Z).
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OPTIONAL: The final three questions in this tutorial are optional.

22. Determine the first order corrections to the energies for the intermediate field Zeeman effect (E′fs ≈ E′Z)

in which the perturbation Ĥ ′ = Ĥ ′Z + Ĥ ′fs in the coupled representation is given in equation (30).
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The energy levels for the n = 2 states of the hydrogen atom in the intermediate field Zeeman effect are
given below.

Table 1: Energy Levels in the Intermediate Field Zeeman Effect (n = 2)

ε1 = E2 − 5γ + β
ε2 = E2 − 5γ − β
ε3 = E2 − γ + 2β
ε4 = E2 − γ − 2β

ε5 = E2 − 3γ + β/2 +
√

4γ2 + (2/3)γβ + β2/4

ε6 = E2 − 3γ + β/2−
√

4γ2 + (2/3)γβ + β2/4

ε7 = E2 − 3γ − β/2 +
√

4γ2 − (2/3)γβ + β2/4

ε8 = E2 − 3γ − β/2−
√

4γ2 − (2/3)γβ + β2/4

23. Use the appropriate Taylor series expansion to check that the corrections to the energies in the interme-
diate field Zeeman effect are consistent with the corrections found in the limiting cases of the strong and
weak field Zeeman effects earlier.
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24. Below is a graph of the splitting of the energy levels of the hydrogen atom for the weak, intermediate, and
strong field Zeeman effect for the n = 2 subspace. Discuss whether the graph is consistent with what you
have learned. Be sure to state whether the number of states is consistent in each regime (weak, strong,
and intermediate field Zeeman effect).

1

1Griffiths, David J. Introduction to Quantum Mechanics. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005. pg. 249
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** Check your answers to questions 21-24. **

21. To find a “good” basis, we must diagonalize Ĥ ′ in the degenerate subspace of Ĥ0. This requires diagonal-

izing the 2× 2 block diagonals −

[
γ − 2

3β
√

2
3 β√

2
3 β 5γ − 1

3β

]
and −

[
γ + 2

3β
√

2
3 β√

2
3 β 5γ + 1

3β

]
. The “good” basis

will be {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉, a|ψ5〉+b|ψ6〉, c|ψ5〉+d|ψ6〉, e|ψ7〉+f |ψ8〉, g|ψ7〉+h|ψ8〉}, in which a, b, c, d, e, f, g,
and h are obtained by diagonalizing the block diagonals.
The corrections to the energies in Table 1 are the diagonal matrix elements of Ĥ ′ in the “good” basis.
22.

E′1 = 5γ − β
E′2 = 5γ + β
E′3 = γ − 2β
E′4 = γ + 2β

E′5 = 3γ − β/2−
√

4γ2 + (2/3)γβ + β2/4

E′6 = 3γ − β/2 +
√

4γ2 + (2/3)γβ + β2/4

E′7 = 3γ + β/2−
√

4γ2 − (2/3)γβ + β2/4

E′8 = 3γ + β/2 +
√

4γ2 − (2/3)γβ + β2/4

23. In the strong field limit (β � γ),
√

4γ2 ± 2
3γβ + 1

4β
2 ≈ 1

2β ±
2
3γ.

E′1 = E2 − 5γ + β
E′2 = E2 − 5γ − β
E′3 = E2 − γ + 2β
E′4 = E2 − γ − 2β
E′5 = E2 + β − 7

3γ
E′6 = E2 − 11

3 γ
E′7 = E2 − 11

3 γ
E′8 = E2 − β − 7

3γ

In the weak field limit (γ � β),
√

4γ2 ± 2
3γβ + 1

4β
2 ≈ 2γ ± 1

6β.

E′1 = E2 − 5γ + β
E′2 = E2 − 5γ − β
E′3 = E2 − γ + 2β
E′4 = E2 − γ − 2β
E′5 = E2 − γ + 2

3β
E′6 = E2 − 5γ + 1

3β
E′7 = E2 − γ − 2

3β
E′8 = E2 − 5γ − 1

3β

24. In the strong field, we found a two-fold degeneracy remaining in the energy spectrum after the two
step approximation. In the weak field, we found no degeneracy remaining in the energy spectrum after the
two step approximation. The results are consistent.

If your answers to questions 21-24 do not match with the checkpoint, go back and reconcile any differences.
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