
Part 1 Quantum measurement without time evolution after measurement 

Note:  

 In the simulations, the y-axis represents )(x  (the absolute value of the wavefunction) 

instead of )(x . 

 

What is quantum measurement? 

No matter what the initial state of the quantum system is, when we measure an observable, the 

system collapses into an eigenstate of the corresponding operator. Therefore, measurement of an 

observable can be considered as projecting the initial state onto an eigenstate of the operator. For 

example, suppose we measure the energy of a particle in the initial state   which is not an 

energy eigenstate. Let the energy eigenstates (eigenstates of the Hamiltonian) be denoted in order 

of increasing energy as 1 , 2 , 3 , ..., n , …, where n is a positive integer. Then, to 

find the probability of measuring energy , we can project the initial state nE   onto the 

energy eigenstate n  as n  and then calculate the probability as 
2

n .  

 

Now answer the following questions.  

(1) Write n  in the position representation? (Hint : Spectral decomposition of identity 

gives 1 xxdx ) 

 

 

(2) What is the dimension /unit of n ? 

A. Length, e.g., nanometer ( nm ) 

B. Inverse length, e.g., nm/1  

C. Inverse square length, e.g.,  2/1 nm

D. Dimensionless / Unitless  

 

(3) What is the physical meaning of 
2

n  ? 

 

 

Now let’s use the idea of projecting a general state along an energy eigenstate to find the 

probability of measuring a particular energy for a 1-D infinite square well.  
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1-D infinite square well 

For a particle in a 1-D infinite square well with Hamiltonian )(
2

ˆˆ
2

xV
m

p
H   (  

when  and  otherwise), the nth energy is 

0)( xV

ax 0 )(xV
2

222

2ma

n
En


  (n=1,2,3,…), 

and the energy eigenfunction corresponding to  is nE 

x





a

n

a
xn

 sin
2

)(  when 

 and ax0 0) (xn  elsewhere. Answer the following questions. (Questions 1--10) 

 

1. Suppose the initial state of the particle is 1 . If we measure the energy of the particle, what 

result(s) can we obtain? 

A. Only 1E  

B. Any of nE , n=1,2,3,… 

C. n nc E , nc  are constants and at least two of nc  are non-zero, n=1,2,3,… 

D. Any value of energy E is possible as long as  1EE 

 

2. In the previous problem (problem 1), after the measurement of energy, what state will the 

particle be in? 

A. Definitely in the state 1  

B. Any of the states n , n=1,2,3, … 

C. 
n

nnA  , nA  are constants and at least two of nA  are non-zero, n=1,2,3,… 

D. None of the above 

 

 

Simulation 1 

Double click the simulation “psi1” on the left column of the program window. The initial state of 

the system in this simulation is 1 . Next, choose “E” (energy) at the lower right corner of the 

new window. Click the button “measure” in the lower middle part of the window. Does the shape 

of the absolute value of the wave function change? Is this result consistent with your answer to 

question 2? What is the measured energy corresponding to the wave function you have obtained? 
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3. Suppose the initial state of the particle is )(
2

1
21   . If we measure the energy of the 

particle, what result can we obtain? 

A.    2/21 EE 

B. 1E  or 2E  

C. Any of nE , n=1,2,3,… 

D. n nc E , nc  are constants and at least two of nc  are non-zero, n=1,2,3,… 

 

4. In the previous problem (problem 3), after the measurement of energy, what state will the 

particle be in? 

A. )(
2

1
21   . 

B. Only 1  or 2  

C. Any of n  with non-zero probability, n=1,2,3,… 

D. 
n

nnA  , nA  are constants and at least two of nA  are non-zero, n=1,2,3,… 

E. None of the above 

 

5. Suppose the initial state is )(
2

1
21   .  If you measure the energy of the 

system, what is the probability of measuring energy nE  in Dirac notation? For the given 

initial state, the probability of measuring which of the energies is non-zero? Is this result 

consistent with your answers to question 3? 

 

 

 

Simulation 2 

Choose the simulation “psi1+psi2”. The initial state of the system in this simulation is 

)(
2

1
21   . Next, choose “E” (energy) at the lower right corner of the window. Then click 

the button “measure” in the lower middle of the window. Does the shape of the absolute value of 

the wave function change?  
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Now click the button with a curved arrow (just to the left of the measure button) to reset the initial 

state to )(
2

1
21   . Then measure the energy again. Do you obtain the same state after 

this second measurement of energy as what you obtained after the first measurement of energy in 

the state )(
2

1
21   ? If yes, do you expect that you may obtain a different state when you 

measure energy in the next trial after resetting the initial state to )(
2

1
21    ?  Is this 

result consistent with your answer to question 4? 

 

 

 

 

 

Since 1 and 2  are orthogonal ( 021  ), 11211
2

1

2

1  





   and 

the probability of measuring  and the initial state collapsing into 1E 1  after the measurement 

of energy is 
2

1


2

1
2

11  . Similarly, the probability of measuring  and collapsing the 

initial state into 

2E

2  after the measurement of energy is 

2

1

2

1

2

1
2

2

2

212  2  . For any other energy eigenstate n , 

021  n , so the probability is zero for those states and the system cannot collapse to 

any n  other than 1  or 2  when we measure the energy for the state 

)(
2

1
21   . 

 

 

 

Now use the method of projecting the general state along an energy eigenstate to answer the 

following questions (questions 6-8). 
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6. Suppose the normalized initial state of the particle is 
n

nnA  , where nA  are constants 

and at least two of nA  are non-zero (n=1, 2, 3, …). If we measure the energy of the particle, 

what result can we obtain? 

A. Any of nE for which 0nA . 

B. n n  A E

C.   
n

nnEA

D. 
n

nn EA
2

 

 

 

7. In the previous problem (question 6), what is the probability of measuring energy nE  in the 

state 
n

nnA  ? Note that nA  can be a complex number. 

A.  nA

B. nA  

C. 2( )nA  

D. 
2

nA  

 

 

 

8. In problem 6, after the measurement of energy, what normalized state will the particle be in? 

A. Any one of the energy eigenstates n  corresponding to the energy measured. 

B. Any one of the states nnA  . 

C. 
n

nnA   

D. 
n

nnA 2
 

E. None of the above 
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Simulation 3 

Choose the simulation “psi1+psi_n”. The initial state of the system in this simulation is 


n

nnA   with equal coefficient  for nA 9n  and 0nA  for . Next, choose “E” 

(energy) at the lower right corner of the window. Then click the button “measure” in the lower 

middle of the window. What state do you obtain? Set back the simulation to the initial state and 

measure again to check whether you can get a different state. Explain what is the probability of 

obtaining a particular state 

9n

n . 

 

 

 

 

9. The orthonormal energy eigenfunctions n  for a 1D infinite square well satisfy 

, where 1




 mnmn dxxx  )()(* mn  when m=n, and 0mn  otherwise. Any 

state  can be expressed as 
n

 nnA   because n  form a complete set of 

vectors for the Hilbert space in which the state of the system lies. Find nA in terms of   

and n  first in the Dirac notation form and then in the integral form in the position 

representation. (The hint is on the last page of part 1, after question 25.) 

 

 

 

 

 

 

10. Suppose the wavefunction of the particle in the initial state is )()( xaAxx   (A is a 

normalization constant) when ax 0  and 0)(  x  otherwise. If we measure the 

energy of the particle, what is the probability of obtaining nE ? (n=1,2,3,…) Use the idea of 

projecting the initial state along an energy eigenstate to find the probability of measuring 

energy nE  . Write down your answer in both the Dirac notation and integral form in the 

position representation You need NOT evaluate the integral but you should show suitable 

limits for the integral.  
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For a particle interacting with a simple harmonic oscillator (SHO) potential energy, the energies 

are 
1

( )
2nE n     (n=0,1,2,…), and the energy eigenfunctions corresponding to  are nE

2/
4/1

2

)(
!2

1
)( 


 





 eH

n

m
nnn


, where )(nH  is the nth Hermite polynomial  and 

x
m



   is a dimensionless variable. The first three Hermite polynomials are , 

, . Answer questions 11 & 12. 

10 H )(x

xxH 2)(1  24)( 2
2  xxH

 

11. Suppose the wavefunction of a simple harmonic oscillator in the initial state is a Gaussian 

function 2/2

)(   Ae , where A  is a normalization constant. If we measure the energy 

of the simple harmonic oscillator, what energy can we obtain?  

A. E  only 

B. 





0

)
2

1
(

n

nE   

C. 
2

1
E  only 

D. Any of the energies )
2

1
(  nEn , n=0,1,2,… 

12. Suppose the initial state of a simple harmonic oscillator is a Gaussian function not centered 

around 0x  (where the potential energy is minimum). The initial state can be expressed as 

2/)( 2
0)(   Ae , where A  is a normalization constant and 00  . If we measure the 

energy of the simple harmonic oscillator, what result(s) can we obtain?  

A. E  only  

B. 





0

)
2

1
(

n

nE   

C. Only ground state energy 
2

1
0 E  since the wavefunction is still Gaussian 

D. Any of the energies )
2

1
(  nEn , n=0,1,2,… 

 

No matter what the initial state is, when we measure the energy of a quantum SHO, we always 

measure an energy eigenvalue (allowed energy) and collapse the wavefunction into an energy 

eigenstate of the SHO. It is the Hamiltonian of the system that determines the energy eigenstates 

and allowed energies of the system. The initial state determines the possibility of collapsing into 

different energy eigenstates and measuring the corresponding energy when measuring the energy 

of the system. 
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Measurement of the position when the initial state is an energy eigenstate, 

Consider an electron in a 1-D infinite square well with 0V  when ax 0  and  

otherwise. Answer the following questions (questions 13 -- 18). 

V

13. Suppose the initial state of the particle is the ground state 1 . If we measure the position of 

the particle, what possible values can we obtain? Will we obtain the same value if we perform 

position measurements on a large number of identically prepared systems? Explain. 

A. ax  only 

B. 2/ax   only 

C. a  x 0
D. Any value between   and   

 

14. In the previous problem (question 13), after the measurement of position, which one of the 

following wavefunctions will the particle be in if we find the particle at 0x x ? 

A. 







a

x

a
x

 sin
2

)(  

B. 





 


a

xx

a
x

)(
sin

2
)( 0  

C. )()( xx    

D. )()( 0xxx    

 

15. Let’s find the probability density of measuring the position of the particle in state 1  

(questions 13&14) using the projection method in the Dirac notation and in the position 

representation. First write down the wavefunction (in the position representation) of the 

particle in the initial state 1  (the ground state). Then, consider the wavefunction of the 

position eigenstate 0x  with eigenvalue 0x . Calculate the projection 10 x  of the state 

1  along the position eigenstate 0x  in the position represenation by writing down the 

integral explicitly. What is the probability density 
2

10 x  for finding the particle at the 

position 0xx  ? Is this result consistent with Born’s interpretation of the wavefunction? 

Explain. (Hint: The spectral decomposition of identity is 1
all

xxxd .)  
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16. Born’s statistical interpretation of the wavefunction says that dxtx
2

),(  gives the 

probability of finding the particle between x and x+dx at time t. Does your result in question 

15 support this statistical interpretation? Explain. 

 

 

 

Simulation 4 

Double click the simulation “QM measurement”. Then choose the simulation “psi1”. The initial 

state in this simulation is 1 . Next, choose “x” (position) and click the button “measure” in the 

lower middle of the window. What is the (approximate) position of the particle measured? Set 

back the simulation to the initial state 1  and measure the position again. Is the particle found 

at the same position as your first measurement? Explain your observation. Is this result consistent 

with your answer to question 13? 

(Note that the position eigenfunction in the simulation is not a perfect delta function due to 

constraints in the simulation. However, the delta function is an ideal model which does not exist 

in the real world. For example, when an electron in a double slit experiment hits the far away 

screen, it leaves a spot with a finite width.) 

 

 

 

17. Suppose the initial state of the particle is )(
2

1
21   . If we measure the position of 

the particle, what result can we obtain? 

A. ax   only 

B. 2/ax   only 

C. ax    0
D. Any value between   and   

 

18. In the previous problem (question 17), after the measurement of position, what state will the 

particle be in if we find the particle at 0x x ? Write down this state in Dirac notation and in 

position representation. What is the probability density for measuring the position 0xx  ? 

(Hint: 1
all

xxdx . You can calculate the projection 0x  in the position 

representation by writing down the integral 
all

 xx )()0 .) 
all

xdxxxxdx (0 
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Simulation 5 

Double click the simulation “QM measurement”. Then choose the simulation “psi1+psi2”. The 

initial state of the system in this simulation is )(
2

1
21   . Next, choose “x” (position) and 

click the button “measure” in the lower middle of the window. What is the (approximate) position 

of the particle? Set back the simulation to the initial state )(
2

1
21    and measure the 

position again. Is the particle found at the same position as your first measurement? Explain your 

observation. Is this result consistent with your answer to question 17? 

 

 

 

 

 

 

 

Measurement of the position when the initial state is an energy eigenstate of the SHO, 

Consider a particle interacting with a simple harmonic oscillator potential energy well. Answer 

questions 19 & 20. 

19. A simple harmonic oscillator is in the ground state with a normalized Gaussian wave function 

as shown. If we measure the position of the particle, what 

results can we obtain? The classical turning points are a  

where 
m

a


                                 

A. 0x  only 

B. ax   only 

C. Any value between a  and a  

D. Any value between   and   

 

 

20. In the previous problem (question 19), after the measurement of position, what state will the 

particle be in if we find the particle at 0x x ? Write down this state in position 

representation. Use the idea of projection to write the probability density of measuring 

0x x  in Dirac notation and in the position representation when the position measurement 

was performed in the ground state of the SHO. 
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Measurement of the position when the initial state is arbitrary 

0Consider a particle in a 1-D infinite square well with V  when ax 0  and  

elsewhere. Answer the following questions (21 & 22). 

V

21. Suppose the wavefunction of a particle in the initial state is )/(  where 

A is a normalization constant. If we measure the position of the particle, what is the 

probability density for finding the particle at 0

sin)( 2 axAx 

x x ? Use the idea of projection to explain 

your answer by writing down the probability density in Dirac notation and in the position 

representation. 

 

 

 

 

 

22. In the previous problem (question 21), immediately after the measurement of position, what 

state will the particle be in? Write down the wavefunction of the particle in this state 

mathematically and also sketch it graphically in the position representation.  

 

 

 

 

 

23. Choose all of the following statements that are correct.  

(1) The shape of the position eigenfunction depends on the Hamiltonian.  

(2) The shape of the energy eigenfunction depends on the Hamiltonian. 

(3) No matter what kind of Hamiltonian the system has, the position eigenfunction is always 

a delta function in position space. 

A. 1 only 

B. 3 only 

C. 1 and 2 

D. 2 and 3 

E. None of the above 

 

24. Consider the following statement: If the initial state is   for a particle in a 1-D infinite 

square well, 
2

1 H  is the probability of obtaining energy 1E  when measuring the 

energy of the particle. Do you agree with this statement? Explain. (Hint : Consider the unit of 

H1 .) 
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25. For a particle in a 1-D infinite square well, suppose its initial state is  . What are the 

physical meanings of  H  and  x ? 

 

 

 

 

 

Hint for question 9: In position representation, 
n

nn xAx )()(  . Use Fourier trick. 

Multiple both sides by *
m , integrate over all space and use orthonormality of energy 

eigenstates. Note that  and . 

Alternatively, in Dirac notation, 

 





n

m dxxx * )()( 



nmn dxA  *


 

n
mmnn AA 

mA
n

mnn
n

nmnm AA    . We can use 

1
all

dxxx  to write  m  in position representation.  
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Part 2 Quantum measurement and time evolution 

For a particle in a 1-D infinite square well ( 0)( xV  when ax 0  and  

elsewhere), the energies are 

V

2

222

2ma

n
En


  (n=1,2,3,…) and the energy eigenstate 

corresponding to each  is nE 







a

xn


a
xn sin

2
)(  when ax 0  and 0)( xn  

otherwise. Answer the following questions. (Question 26~34) 

 

26. At time 0t  , the initial state of the particle is the ground state 1 . If we measure the 

energy of the particle at time t , what result(s) can we obtain? 

A. Only 1E  

B. Only /
1

1tiEeE    

C. Any of the energies nE , n=1,2,3,… 

D. Any of /tiE
n

ne , n=1,2,3,… E 

E.  nnEc , nc  are constants and at least two of nc  are non-zero, n=1, 2, 3, … 

 

27. In the previous problem (question 26), after the measurement of energy, what state will the 

particle be in? 

A. The ground state 1  

B. Any of the states n , n=1,2,3,… 

C. 
n

nnA  , nA  are constants and at least two of nA  are non-zero, n=1,2,3,… 

D. None of the above 

 

Simulation 6 

 Choose the simulation “psi1”. The initial state in this simulation is 1 . Next, click the 

triangular button (to start and stop the time evolution) on the lower left corner of the window. 

You can see a clock at the lower right corner of the window showing the time. Does the shape 

of the absolute value of wavefunction change with time? Why is an energy eigenstate called a 

“stationary state”? 
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 Now measure the energy around t=2 units. What is the state of the system after the energy 

measurement? Set back the simulation to the initial state 1  and measure the energy again 

around t=3 units. Is the result the same as your first measurement (around t=2 units)? Is this 

result consistent with your answer to question 26? 

 

 

 

 

28. Suppose the initial state of the particle is the first excited state 2 . When you measure the 

energy of the particle, is it possible to obtain the ground state energy 1E ? Explain. 

 

 

 

 

29. At time 0t  , the initial state of the particle is )(
2

1
21   . If we measure the 

energy of the particle after time t , what result(s) can we obtain? 

A.    2/21 EE 

B. 1E or  2E

C.   2//
2

/
1

21  tiEtiE eEeE    

D. /
1

1tiEeE   or  /
2

2tiEeE 

E. Any of nE , n=1,2,3,… 

 

30. In the previous problem (question 29), right BEFORE the measurement of energy, what state 

will the particle be in? 

A. )(
2

1
21    

B. 1  or 2  

C. )(
2

1 /
2

/
1

21  tiEtiE ee     

D. /
1

1tiEe  or /
2

2tiEe  
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31. In the previous problem (question 29), after the measurement of energy, what state will the 

particle be in? 

A. )(
2

1
21     

B. Either 1  or 2  

C. Any of n , n=1,2,3,… 

D. 
n

nnA  , nA  is constant and at least two of nA  are non-zero, n=1,2,3,… 

E. None of the above 

 

Simulation 7 

 Open the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . 

Start the time evolution. Does the shape of the absolute value of the wavefunction change 

with time? Is the state )(
2

1
21    a stationary state? 

 

 

 

 

 Now measure the energy around t=2 units. What is the state of the particle after the energy 

measurement? Suppose you obtain state i  ( i=1 or 2) in the first measurement of energy. 

If you set back the simulation to the initial state )(
2

1
21    and measure the energy 

again around the same time t=2 units, do you think you have the same probability of 

obtaining i  as in your first measurement? Does the probability of obtaining i  

change if you re-initialize the state and measure the energy around the time t=3 units? (Note 

that you only need to write down your conclusion and explanation without measuring the 

energy repeatedly to estimate the probability.) 
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32. At time 0t  , the initial normalized state of the particle is n nA , where nA  are 

normalized non-zero constants. If we measure the energy of the particle at time t , what 

result can we obtain? 

A. Any of nE , n=1,2,3,… 

B. Any of n n  A E

C. Any of /  niE t
n nA E e 

D.   

n

tiE
nn

neEA /

E.  

n

tiE
nn

neEA /2
 

 

 

 

33. In problem 32, right BEFORE the measurement of energy, what state will the particle be in? 

A. 
n

nnA   

B. n  

C.  

n

tiE
nn

neA /  

D. /tiE
n

ne   

 

 

 

34. In problem 33, what is the probability of measuring energy nE ? 

(1)  /niE t
nA e 

(2) 
2

nA  

(3) 
2/niE t

nA e   

A. 1 only    B. 2 only    C. 3 only    D. 2 and 3 only    E. all of the above 
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Simulation 8 

 Choose the simulation “psi1+psi_n”. The initial state in this simulation is 
n

nnA  . Start 

the time evolution. Does the shape of the absolute value of the wavefunction change with 

time?  

 

 

 

 Reset the simulation to the initial state 
n

nnA   and make an energy measurement at 

time t=0. Sketch the wave function you observed in the simulation. Which energy eigenstate 

i  do you obtain? Which energy have you measured? 

 

 

 

 

 

 Now reset the simulation to the initial state 
n

nnA   and start the time evolution. 

Measure the energy around t=2 units. What is the state of the particle after the energy 

measurement? What is the energy that you measured? Write down how the state 
n

nnA   

evolves with time and calculate the probability of measuring energy nE . Does the 

probability of measuring a particular energy nE  and collapsing into an energy eigenstate 

n  change with time? Explain. (You only need to write down your conclusion and 

explanation without measuring the energy repeatedly to estimate the probability.) 

 

 

 

For a particle interacting with a simple harmonic oscillator (SHO) potential, the allowed energies 

are 
1

( )
2nE n     (n=0,1,2,…), and the energy eigenstate corresponding to each  

is

nE

2/
4/1

2

)(
!2

1
)( 


 





 eH

n

m
nnn


, where )(nH  is the nth Hermite polynomial and 

x
m



   is a dimensionless variable. The first three Hermite polynomials are , 

, . Answer the following questions (questions 35 & 36). 

1)(0 xH

xxH 2)(1  24)( 2
2  xxH
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Measurement of the energy of SHO at time t>0. 

35. At time 0t  , suppose the initial state of a simple harmonic oscillator is a Gaussian 

 2/2

)( function   Aex , where A  is a positive constant. If we measure the energy of the 

simple harmonic oscillator at time t , what result can we obtain? 

A. E  only 

B. 





0

)
2

1
(

n

nE  , n=0, 1, 2, … 

C. 
2

1
E  only 

D. Any of the energies )
2

1
(  nEn , n=0,1,2, … 

36. In the previous problem (question 35), after the measurement of energy, what state will the 

particle be in? 

A. 







a

x

a
x

 sin
2

)(  

B. 







a

xn

a
x

 sin
2

)( , n=1,2,3,… 

C. 2/
4/1

2

)(
!2

1
)( x

nn
exH

n

m
x 









 , n=0 only 

D. Any of 2/
4/1

2

)(
!2

1
)( x

nn
exH

n

m
x 









 , n=1,2,3,… 

E.  nncx  )( , where 2/
4/1

2

)(
!2

1
)( x

nnn exH
n

m
x 









 , n=0,1,2,… 

Now consider a particle in a 1-D infinite square well ( 0)( xV  when  and 

 otherwise). Answer the following questions (question 37-40). 

ax 0

)(xV

37. Suppose at time 0t   the initial state wavefunction of the particle is 

)()( xaAxx  for ax   and 0)(0  x  otherwise. If you measure the energy of 

the particle at time t , what is the probability of obtaining nE ? You can leave the probability 

as an integral. (Hint: Recall question 9 in the first part of this tutorial. You can write  

in the basis of energy eigenfunctions as 

)(x


n

x)( nnA  and find the coefficients nA by 

projecting the state   along the energy eigenstate n  or by using the Fourier trick. ) 
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38. Given the wavefunction at time 0t , why is it useful to write the state of a quantum 

system as a superposition of energy eigenstates to find the wavefunction after time t? (The 

answer is on the last page of the tutorial.) 

 

 

 

Measurement of postion 

39. Harry and Sally prepare the same initial wavefunction 
2

)()( 21 xx    which is a linear 

superposition of the energy eigenfunctions )(1 x  and )(2 x  in their labs at time t=0. 

They each make a measurement of the position of the electron after different time t. The 

wave function at time t is 
2

) /2 tiEex ()(
),( 2

/
1

1 tiEex
tx

 


 . Harry measures the 

position of his electron at time t=1 unit and Sally measures the position of her electron 

at time t=3 units. Consider the following conversation between Harry and Sally. 

 

Harry: The probability that I will find my electron between  and 0x dxx 0

dxx

 is not the same as 

the probability that you will find your electron between  and 0x 0 . The probability is 

determined by the absolute square of the wave function, dxtx0 ,
2

)( , which depends on time. 

Sally: I agree that the probability density for measuring position depends on 
2

0 ),( tx . But 

when you calculate 
2

0 ),( tx , the time dependent phase factors will cancel out and the 

probability density will be time independent. You and I have the same probability of measuring 

the position between  and .  0x dxx 0

Harry: The time-dependent phase factors do not drop out of the cross terms. We need to square 

the whole wave function, not only the coefficients of )(1 x  and )(2 x  separately. That is 

why we get time dependent cross terms. 

 

With whom do you agree? Explain. Use the simulation “psi1+psi2” to justify your answer. 

(In this simulation, the position eigenfunction is drawn as a narrow function (but not a delta 

function) due to constraints in the simulation. It is an approximation for a delta function obtained 

in an ideal position measurement which has an infinitely high peak and infinitesimal width.)  
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Measurement of energy 

 

40. Harry and Sally prepare the same initial state wavefunctions 
2

)()( 21 xx    from 

energy eigenfunctions )(1 x  and )(2 x  in their labs at time t=0. Harry measures 

the energy of his electron in a 1D infinite square well at t=1 unit and Sally measures the 

energy of her electron in an identical 1D infinite square well at time t=3 units. Consider 

the following conversation between Harry and Sally. 

 

Harry: The probability that I will measure energy  is not the same as the probability that you 

will measure energy . The probability is determined by the absolute square of the 

wavefunction, 

nE

nE

2
),( tx , which depends on time. 

Sally: No. The probability of measuring position depends on the absolute square of the wave 

function. This time we are measuring energy. The time-dependent phase factors will cancel out 

because only one factor  can contribute in calculating the probability of measuring a 

particular energy . Thus, the probability of obtaining  will be time independent. You and I 

have the same probability of measuring energy . 

/tiEne

nE nE

nE

Harry: But there will be cross terms in the square of the wave function. The phase factors do not 

drop out for the cross terms.  

Sally: I disagree. The probability of measuring energy is determined by the square of the 

coefficients of each of the energy eigenfunctions )(1 x  and )(2 x . We do not square the 

entire wavefunction, we only square the coefficients of each energy eigenfunction and the time 

dependence drops out. For example, the probability of measuring energy  is given by: 1E

2

1

2
)(

2/

1

1


 tiEe

Ep , which is time independent. 

With whom do you agree? Explain. 
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Simulation 9* (Complete if time is available) 

If you are not sure about the answer to question 40, you may check it with the simulation. Measure 

the energy at t=1 unit for 20 trials, and estimate the probability of obtaining . Then measure the 

energy at t=3 units for 20 trials and estimate the probability of obtaining . Combine your data 

with other groups’ to make the result statistically reliable. 

1E

1E

 

 

 

Consecutive measurements 

Measure the energy of the system first and then measure the energy again. 

41. At time 0t  , the initial state of the particle is )2 . We first measure the 

energy of the particle at time t  and obtain the energy 1E . Then we immediately measure 

the energy again. What result can we obtain in the second measurement? Explain your 

choice. 

(
2

1
1

A. Only 1E  

B. Either 1E  or  2E

C. Only  /1
1tiEeE 

D. Either /
1

1tiEeE   or /
2

2  tiEeE 

E. Any of nE , n=1,2,3, … 

 

42. In the previous problem (question 41), after the second measurement of energy, what state 

will the particle be in? 

A. 1  or 2  

B. Any of n , n=1,2,3,… 

C. 1  

D. )(
2

1
21    

E. None of the above 
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Simulation 10 

Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . Start 

the time evolution. Around t=2 units, first click the start/stop button to pause the time evolution 

and then measure the energy. What state do you obtain? Then measure the energy again without 

re-initializing the wavefunction. Is the state the same as the state you observed after your first 

measurement? 

 

 

 

 

 

43. In question 41, if the time interval between the first and second energy measurement is 

0t , what is the measured energy and state of the particle after the second measurement? 

 

 

 

 

Simulation 11 

Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . Start 

the time evolution. Around t=2 units, first click the start/stop button to pause the time evolution 

and then measure the energy. What state do you obtain? Then start the time evolution and measure 

the energy again at t=3 units without re-initializing the wavefunction. Is the state the same as your 

first measurement? (Note that the clock would return to zero when you restart the time evolution.) 

 

 

First measure the energy of the system and then measure the position after the energy 

measurement. 

44. At time 0t  , the initial state of the particle is )(
2

1
21   . We first measure the 

energy of the particle at time 0t t  and obtain the result 1E . Then we immediately 

measure the position of the particle (also at time 0t t ). What is the probability of finding 

the particle in the region between 0x  and 0x dx ? 
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45. In the previous problem (question 44), if the measurement of position is made at  

instead of 0t (not immediately after the energy measurement), what is the probability of 

finding the particle in the region between 0

1t t

x  and 0x dx ? If the particle is found at 

0x x , what is the state of the particle after the position measurement in Dirac notation and 

in the position representation? 

 

 

 

 

 

 

Simulation 12  

 Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the energy. What state do you obtain? Explain 

 

 

 

 

 Start the time evolution. Does the shape of the absolute value of wave function change with 

time? According to your wave function, what is the most probable position for finding the 

particle? Does this most probable position change with time? Explain 

 

 

 

 

First measure the position of the system and then measure the position again.  

46. We first measure the position of a particle in a 1-D infinite square well at time 0t   and 

find the particle at 0x x . At time t(>0) after the position measurement, what state will the 

particle be in? Write your answer in terms of an expansion in a complete set of energy 

eigenstates. Use n  and nE  to denote the energy eigenstates and energy eigenvalues. 

(Hint: refer to question 37)  
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47. In question 46, when we make a second measurement of position at time t(>0), what is the 

probability density of finding the particle at 0x x ? Does the probability density depend on 

time t when the measurement was performed? 

 

 

 

 

 

 

48. In question 46, if the second measurement of position is made immediately after the first 

position measurement at time 0t  , what is the probability density of finding the particle at 

0x x ?  

 

 

 

 

 

Simulation 13 

 Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the position. What state do you obtain? Then measure the 

position again after the first position measurement without starting the time evolution, will 

you obtain the same state as the first position measurement? Explain. 

 

 

 

 

 Then start the time evolution. Does the shape of wave function change with time? Will the 

wave function go back to the state )(
2

1
21   ? According to your wave function at 

t=10 units, what is the most probable position for finding the particle? Does this most 

probable position change with time? Explain. 

(Note that if you make the second position measurement immediately after the first position 

measurement, you may find that the wavefunction after the second measurement shifts its position 

somewhat. This is because the wavefunction in which the system collapses after the position 

measurement in our simulation is not an ideal position eigenfunction (it is not a delta function). If 

we had a delta function, the position eigenfunction would be highly localized and the second 

measurement of position in immediate succession would give us the same result as the first 

position measurement.) 
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First measure the position of the system and then measure the energy after the position 

measurement. 

49. Suppose we measure the position of a particle for the initial state )(
2

1
21    in a 

1-D infinite square well at time 0t   and find the particle at 0x x . Then we measure the 

energy of the particle immediately after the position measurement. What is the probability of 

obtaining the ground state energy? (Hint: In order to find the probability of measuring energy, 

the wavefunction must be expanded in term of a complete set of energy eigenstates.) 

 

 

 

 

 

50. In question 49, if we perform the measurement of energy after time 0t t , what is the 

probability of measuring the ground state energy? Is the result the same as the result for the 

immediate energy measurement? (Hint: Find the wavefunction after time t and then calculate 

the probability of measuring ground state energy.) 

 

 

 

 

 

Simulation 14 

 Choose the simulation “psi1+psi2”. The initial state in this simulation is )(
2

1
21   . 

Start the time evolution. Around t=2 units, first click the start/stop button to pause the time 

evolution and then measure the position. Draw the shape of the wavefunction you obtain after 

the position measurement. Is this what you expected? 

 

 

 

 

 Then measure the energy without restarting the time evolution. Can you predict what energy 

you will obtain (which energy eigenstate your system will collapse to) after the energy 

measurement? Will you obtain any energy eigenstates other than 1  and 2 ? Explain. 
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Answer to question 38 

 

The Hamiltonian governs the time evolution of the system according to the time dependent 

Schrödinger equation (TDSE). Since energy eigenstates n  are eigenstates of the Ĥ  operator, 

the energy eigenstates have a simple time evolution of the form /tiE
n

ne . When we write a 

general state as a superposition of the energy eigenstates (or stationary states), each term in the 

superposition evolves according to a different phase of the type  (assuming no degeneracy) 

so that the state at time t is 

/tiEne

 

n

tiE
nn

neA / where can be calculated by using the Fourier 

trick in position representation or by projecting the initial state along the energy eigenstate 

nA

n . 
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