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Dirac Notation Basics
· For all questions involving a generic operator  corresponding to a physical observable , assume that it only depends on position  and momentum .
· For a hermitian operator , the notation  with  between two vertical lines is the same as , i.e.,  since a hermitian operator can act forward or backwards on the state, i.e., .  If an operator is not hermitian (does not correspond to a physical observable), one should assume that the operator acts on the state after it (to the right of the operator), even if  notation is used.
The goals of this tutorial are to help you learn that:
· The state of a quantum system  is a vector
· that lies in an  dimensional Hilbert space.
· that has all possible information about the  quantum system.
· Scalar products (or inner products) 
· are defined as the component of one state  along another state .
· Are, in general, complex numbers (the number could have dimensions).
· Hilbert Space
· A quantum state   is a vector in the Hilbert space.
· The dimensionality of the Hilbert space is given by the number of linearly independent vectors that span the Hilbert space.
· The eigenstates of a non-degenerate hermitian operator can be chosen as the basis vectors for the Hilbert space because they span the space.
· Expansion of a state using a complete set of eigenstates
· A state  can be written in terms of a linear superposition of a complete set of eigenstates {} of any hermitian operator .
· The coefficients in the expansion, , are the components of the state  along the direction of the eigenstates of a hermitian operator .
· Probability of measuring an eigenvalue of a hermitian operator  in a generic state 
· 
For orthonormal eigenstates {} with discrete eigenvalues ,  is the probability of measuring  for an observable 
· For orthonormal eigenstates  with continuous eigenvalues ,  is the probability of measuring the observable  in a narrow range between  and .
· Expectation value of an operator  in a generic state  in terms of eigenstates and eigenvalues of 
· The expectation value of a hermitian operator  with eigenstates {, } and discrete eigenvalues  in a generic state  is .
· The expectation value of a hermitian operator  with eigenstates  and continuous eigenvalues  in a generic state  is 
· Completeness relation
· The completeness relation can be written as  , where {} form an orthonormal basis for an N dimensional vector space.   is the identity operator.
· The completeness relation can be written as , where  form an orthonormal basis for an infinite dimensional vector space.
· The completeness relation is useful for decomposing a state vector into its components along each of the basis vectors.
· Projection operator
· The projection operator  acting on a state  returns a vector in the direction of   together with a number , which is the component of a state vector along the direction of the orthonormal basis vector .
· The projection operator  acting on a state  returns a vector in the direction of  together with a number , which is the component of a state vector along the direction of the orthonormal basis vector .

State of the quantum mechanical system

1. Choose all of the following statements that are correct.
(I) In Dirac notation, eigenstates of a physical observable are generally labeled by the corresponding eigenvalue. For example, position eigenstates  are labeled by eigenvalues , and momentum eigenstates  are labeled by eigenvalues .
(II) The quantum state written in Dirac notation,, lies in an abstract Hilbert space.
(III) The state  contains all information one can obtain about the system at a given time.
(a)  (I) and (II) only
(b) (II) and (III) only
(c) (I) and (III) only
(d) All of the above

2. Choose all of the following statements that are correct.
(I) The state vector in Dirac notation, , is an abstract vector without reference to a coordinate system.
(II) The infinite dimensional column vector  when considered as a function of x is the wavefunction of the system at a given time.  is obtained when the position eigenstates  are chosen as the basis vectors to write state .
(III) 


The state vector  and wavefunction have the same information, but  is a vector with position eigenstates as the coordinate axes and  for each x denotes the component of  along the direction of .

(a) (I) and (II) only
(b) (I) and (III) only
(c) (II) and (III) only
(d) All of the above.


Summary of state vectors:

· The state of a quantum system is given by a vector  in an abstract Hilbert space.
· The state  contains all possible information about the quantum system at a given time.
· The state  makes no reference to a coordinate system until the basis vectors are chosen.
· The infinite dimensional column vector  when considered as a function of  is the wavefunction of the system at a given time.  is obtained when the position eigenstates  are chosen as the basis vectors to write state .
· 


The State vector  and wavefunction  have the same information, but  is a vector with position eigenstates as the coordinate axes and  for each x denotes the component of  along the direction of .










Scalar product (Inner product)

3. The scalar product, or inner product, gives the component of a state, e.g., , along another state, e.g., .  Choose all of the following notations that are correct for the scalar product that gives the component of state  along state ?
(I) 
(II) 
(III) 
(a) (I) only
(b) (II) only
(c) (III) only
(d) (I) and (II) only

4. Which one of the following equations is correct in general?
(a) 
(b) 
(c) , where * denotes complex conjugate.
(d) , where * denotes complex conjugate.


5. Since the wave function is normalizable, the scalar product of a normalized state vector  with itself gives
(a) 
(b) 
(c)  can be any finite number depending on the state.
(d) 
 , where  is a phase factor that depends on the state.

Summary of scalar products (inner products):
· A scalar product of state   with ,  , is defined as the component of state   along state .
· A scalar product is not a vector.  In general, the scalar product is a complex number.  
· Interchanging the “bra” and “ket” states in a scalar product produces its complex conjugate: .
· The scalar product of a normalized state  with itself gives 1, i.e., .


Hilbert Space
6. Which one of the following statements is true about the Hilbert space corresponding to a spin ½ system?
(a) The Hilbert space is two dimensional and the spin operator corresponding to each of the spin components has two eigenstates that form a complete set of basis vectors.
(b) The Hilbert space is three dimensional because the physical laboratory space is three dimensional and Hilbert space is a mathematical representation of the real world.
(c)  The Hilbert space is infinite dimensional, because a finite dimensional space cannot be the Hilbert space for any quantum mechanical system.	
(d) None of the above.




7. Choose all of the following statements that are correct about the eigenstates of an operator in a Hilbert space.
(I) An operator in a finite dimensional Hilbert space can have a finite number of discrete eigenvalues.
(II) An operator in an infinite dimensional Hilbert space can have infinitely many discrete eigenvalues.
(III) An operator in an infinite dimensional Hilbert space can have infinitely many continuous eigenvalues. 
(a) (I) and (II) only
(b) (I) and (III) only
(c) (II) and (III) only
(d) All of the above.

8. Suppose  is an observable for a given quantum system and its corresponding operator in the Hilbert space is . Choose all of the following statements that are correct.
(I)  must be a hermitian operator.
(II) 
(III)  for all states  and  in the Hilbert space.
A. 1 only    B. 2 only    C.  3 only      D. 1 and 2 only     E. all of the above


9. “Any state vector in a Hilbert space can be expanded as a linear combination of a complete set of eigenstates of a hermitian operator.” Which one of the following does this statement imply?  Note:  Answer choices below may be correct statements but may not be implied by the statement in this question.
(a) All hermitian operators commute with each other and have simultaneous eigenstates.
(b) Eigenstates of a Hermitian operator can be chosen to be the coordinates (basis vectors) in the Hilbert space.
(c) All hermitian operators have real eigenvalues that correspond to results of measurements in physical space.
(d) The given statement is incorrect. The correct statement should read “Any vector in Hilbert space can only be expanded as a linear superposition of a complete set of energy eigenstates (eigenstates of the Hamiltonian operator).”

10. “Any state vector in the Hilbert space can be expanded as a linear superposition of a complete set of eigenstates of a hermitian operator” is a correct statement. Choose all of the following that can be examples of the mathematical representation of this statement.
(I) , where  are energy eigenstates for a given quantum system and  are appropriate expansion coefficients.
(II) , where  are position eigenstates and  are appropriate expansion coefficients.
(III) , where  are energy eigenstates and  are appropriate expansion coefficients.
(a) (I) only
(b) (I) and (II) only
(c) (II) and (III) only
(d) All of the above.

Summary of Hilbert Space:
· Quantum state vectors are vectors in the Hilbert space.
· State vectors can be expanded as a linear superposition of a complete set of eigenstates of a hermitian operator.
· The dimensionality of the Hilbert space is given by the number of linearly independent vectors in the space.  The eigenstates of a hermitian operator span the space which means that they form a complete set of basis vectors for the Hilbert space.
· When the measurement of an observable is performed in physical space, the values one measures are the eigenvalues of the corresponding hermitian operator. 
 (
Checkpoint 1
Consider the following conversation between student A and student B:
Student A:  The Hilbert space
 for
 a particle interacting with a one dimensional infinite squar
e well is infinite dimensional.  Also, the position eigenstates form a complete set of basis vectors for the space and
 the position of the particle has infinitely many values within the width of the square well.
Student B:  I disagree.  The Hilbert space f
or a
 particle interacting with a one dimensional infinite square well is one dimensional, because
 the well is one dimensional and the particle is confined 
in one dimension.
Which student, if either, do you agree with and why?
)





Expansion of a state vector in terms of a complete set of eigenstates

11. Earlier you learned that any vector in the Hilbert space can be expanded as a linear superposition of a complete set of eigenstates of a hermitian operator .  For an operator  with eigenstates {} (which form an orthonormal basis for an  dimensional vector space) and discrete eigenvalues , choose all of the following statements that are correct about the coefficients  in the expansion 
.
(I) To find , we take the scalar product with an eigenstate . Then,
.
(II) To find , we take the scalar product with an eigenstate . Then,
.
(III) The coefficient  for a particular eigenstate  in the expansion  is related to the probability of measuring the corresponding eigenvalue  when a measurement of observable  is made in the state .
(a) (I) and (II) only
(b) (I) and (III) only
(c) (II) and (III) only
(d) All of the above.


12. Consider the following conversation between Student A and Student B.
· Student A: In the preceding question, statement (II) seems to make more sense than statement (I), because we are using the expansion  as opposed to .
· Student B: But m and n are just “dummy” indices.  They both can range from 1 to N, where N is the dimension of the Hilbert space. 
· Student A: What is the point of changing the label from  to  in the expansion of   in statement (I)?
· Student B: If you take the scalar product of   with an eigenstate  with the same index , like in statement (II), you obtain . You end up with a sum over all ’s. This is incorrect. You must take the inner product with a different “dummy” indexed state , so that you get . Instead of , you obtain  which gets rid of the summation. This is the correct answer, which is just a single coefficient , not a sum .
· Student A:  I see.  If we choose a different dummy index for state  when taking the inner product, we get  , which gets rid of the sum over .
Do you agree with Student B’s explanation? Explain why or why not.



13. Consider the following conversation between Student A and Student B.
· Student A: For an operator with a discrete eigenvalue spectrum, such as energy, we can talk about measuring each of the eigenvalues. We can calculate the probabilities for measuring each of them individually.
· 
Student B: I agree. But for an operator that has a continuous eigenvalue spectrum, like position or momentum, we should talk about measuring a value in a narrow range. For example, the probability of measuring position between  is . 
Do you agree with Student A and/or Student B? Explain your reasoning.



14. For an arbitrary physical observable  with discrete eigenvalues  and eigenstates , where 
, write the probability of measuring eigenvalue  as a result of a measurement of  performed when the system is in the state .




15. Earlier you learned that any vector in the Hilbert space can be expanded as a linear superposition of a complete set of eigenstates of a hermitian operator .  In the case of an operator  with continuous eigenvalues  and eigenstates  (which form an orthonormal basis for an infinite dimensional vector space), choose all of the following statements that are correct about the coefficients  in the expansion 
? (Hint: This is similar to question 11, except the eigenvalues are continuous).
(I) To find , we take the scalar product with an eigenstate . Then, 
 .
(II) Physically, the coefficient  is the component of the state  along the direction of the eigenvector  (with eigenvalue .
(III) The coefficient  in the expansion  is related to the probability of measuring the eigenvalue  when observable  is measured in the state .
(a) (I) and (II) only 
(b) (I) and (III) only.
(c) (II) and (III) only
(d) All of the above.

16. Earlier, you learned that for an operator  corresponding to a physical observable  with eigenstates {,  } with discrete eigenvalues 
(I)  is the probability amplitude for measuring  if we measure observable 
(II)  is the probability for measuring  if we measure observable .  

Before Dirac notation was introduced, physicist Max Born interpreted the probabilistic nature of quantum mechanics and proposed the following statements for the continuous case for observable  which has a continuous eigenvalue spectrum:

(I)  is the probability density amplitude for measuring position. 
(II)  is the probability density for measuring position.
(III) 
 is the probability of finding the particle in the narrow range between  when position of the particle is measured.

Write each of these expressions (probability density amplitude, probability density, and probability of measuring position in a narrow range between  and ) in Dirac notation.



(a) 

(b) 

(c) 


17. Dirac extended Born’s interpretation to apply to measurements of not only position but any physical observable.  Keeping in mind your answers to the two preceding questions, for an arbitrary physical observable  with eigenstates with continuous eigenvalues, write the probability of measuring observable  between  and  as a result of a measurement performed when the system is in the state .







18. The expectation value of an operator is the average value of the observable measured over many identical experiments performed on identically prepared systems in state .  For a general quantum mechanical hermitian operator , the expectation value is represented by .  If  has discrete eigenvalues  and eigenstates  where , let’s write  in terms of the eigenstates  and eigenvalues .
(a) Write  as a linear superposition of the eigenstates of .





(b) Consider the following conversation between two students:
· Student A:  If we write  as a linear superposition of the eigenstates of , we obtain 
 , where  is the expansion coefficient.
· Student B:  I agree with you.  But we know that the expansion coefficients, , are the eigenvalues   of the operator .  So we can write  as a linear superposition of the eigenstates of  like this:  .
With whom do you agree?  Explain your reasoning.





(c) The linear superposition of  in terms of the eigenstates of  can be written as
 , where  is the expansion coefficient and gives the component of the state  along the direction of the nth eigenstate    Write   explicitly in terms of  and .





(d) What is the probability of measuring  when you measure observable  in the state ?





(e) Consider the following conversation between Student A and Student B:
· 
Student A:   is the probability of measuring  when you measure observable  in the state .  The expectation value is the average value of a large number of measurements performed on identically prepared systems.  Since we know the probability of measuring each eigenvalue  of the operator , the expectation value is .
· Student B:  No.  You cannot think about expectation value physically as an average of a large number of measurements on identically prepared systems.  We must use our expansion , to calculate the expectation value .
With whom, if either, do you agree?  Explain your reasoning.  




(f) Student A is correct.  The expectation value is the average value of a large number of measurements on identically prepared systems, which can be represented mathematically by the equation .  But let’s follow Student B’s method using the expansion  to prove that the equation , suggested by Student A, is correct.  Act with  on the state .  What do you obtain?






(g) So far, we have  .  Using your answer from part (c), insert what you obtained for  into .






(h) We now have .  Now take the inner product of  with a “bra” state  to find the expectation value .  Does your answer agree with Student A’s statement from part (e)?  If not, go back and check your work with a partner to obtain the equation for the expectation value of observable  in terms of its complete set of eigenstates { and eigenvalues , i.e., . 






(i) Repeat the calculation for the expectation value  of an operator  with eigenstates  (which form a basis in an infinite dimensional vector space) with continuous eigenvalues .  









19. Suppose an operator   corresponding to a physical observable  has eigenstates {, } with discrete eigenvalues .  Which of the following are correct about the expression ?
(I) 
(II)  is equal to a real number.
(III)  is equal to a complex number that does have an imaginary part.  
(a)  (II) only
(b) (III) only
(c) (I) and (II) only
(d) None of the above.


20. Consider the following conversation between two students about the preceding question:
· Student A:  I don’t see how .
· Student B:  Let me show you.  
1. We can start with , since any state vector can be normalized to 1.
2. Insert the identity operator, written in terms of the eigenstates {, }  of the operator , like this:  .
3. Using the fact that , we can write
 .
· Student A:  I see.  Is there any physical significance to ?
· Student B:  Yes.   is the probability amplitude and  is the probability for measuring  if we measure observable .  
· Student A:  So based on the mathematical expression , the probabilities of measuring different eigenvalues  when we measure the observable  must add up to 1.
Do you agree with Student A and Student B?  Explain your reasoning.











Summary of the expansion of a state vector in terms of a complete set of eigenstates:

· We can write the state vector in terms of a linear superposition of the energy eigenstates, position eigenstates, or eigenstates of any other hermitian operator since each of them spans the space.
· If  has eigenstates  (  ) with discrete eigenvalues ,  then   
, in which  is the component of the state   along , i.e., .
· If  has eigenstates  with continuous eigenvalues , then , in which  is the component of the state   along the eigenstate  , i.e., .
· If a hermitian operator  has a discrete eigenvalue spectrum, the expansion of a state vector  in terms of the eigenstates  of the hermitian operator is a sum.  If a hermitian operator  has a continuous eigenvalue spectrum, the expansion of a state vector vector  in terms of the eigenstates  of the hermitian operator is an integral.  
· 

For discrete eigenvalues ,  is the probability of measuring  for an observable  when the system is in the state .
· For continuous eigenvalues ,  is the probability of measuring an observable  in a narrow range between  and  when the system is in the state .
· The expectation value of a hermitian operator   in a generic state  is the average value of the observable  measured over many identical experiments performed on identically prepared systems in state .
· In a generic state , the expectation value for an operator  with eigenstates  () with discrete eigenvalues  is 
· In a generic state , the expectation value for an operator  with eigenstates  with continuous eigenvalues  is 
Completeness Relation

The completeness relation can be written in terms of orthonormal eigenstates  of an operator  with discrete eigenvalues .  Mathematically, the completeness relation is , where {} is an orthonormal basis for an N dimensional Hilbert space and  is the identity operator which can be represented by an  identity matrix.  Completeness (of a set of basis vectors, e.g., eigenstates of an operator corresponding to a physical observable) means that an arbitrary state vector   can be written in terms of the complete set of basis vectors.  

21. a)  Act with the identity operator , written in terms of orthonormal eigenstates  of an operator  with discrete eigenvalues , on an arbitrary state vector .  What do you obtain? 




b)  Explain your results from part (a) in a sentence.  






22. So far we have    If , which one of the following is the correct expression for the coefficients  along the state  in the expansion of ?
(a) 
(b) 
(c) 
(d) 


The identity operator acting on an arbitrary state  is  .  This shows that a generic state  can be written in terms of a complete set of eigenstates which span the Hilbert space.  We often use the completeness relation to decompose a generic state  into its components along each of the basis vectors (eigenstates of a hermitian operator can be chosen to be the basis vectors in the Hilbert space).








23. Re-calculate expectation value of  in state , , by using the completeness relation  inserted into the expression  and compare to your answer for question 18 part (h).  






24. The completeness relation can also be written in terms of the eigenstates of an operator  with a continuous eigenvalue spectrum. The completeness relation corresponding to a hermitian operator  with eigenstates with continuous eigenvalues  is , where  is an infinite dimensional identity matrix.   
(a) What is the result of  (completeness relation written in terms of a complete set of eigenstates ) acting on ?







(b) So far have .  Explain whether  is a number, operator, or vector.  







(c) Consider the following conversation between Student A and Student B:
· Student A:  The component of  along the basis vector  is , which is a number.  So we are free to move  in the integral .  So .
· Student B:  I disagree with you.  We cannot simply move  around inside the integral, like this .
With whom, if either, do you agree?  Explain your reasoning. 







(d) Using your answers to the preceding parts (a-c), what is the expression for an arbitrary state  written in terms of continuous eigenstates  of a hermitian operator  and numbers ?






(e) Use your answers to the preceding parts (a-d) to calculate the expectation value  in terms of eigenstates with continuous eigenvalues  of a hermitian operator .






25.  Which one of the following relations is correct about an operator  with eigenstates {} (which form an orthonormal basis for an  dimensional vector space) and discrete eigenvalues ? 
(a) 
(b) 
(c) 
(d) 

26. To check your answer to the preceding question, you must show that the operator  acting on any generic state gives the same result as the right hand side of the expression in the preceding question. 
(a) Act with the operator   on a generic state , like this:  .  Now insert the identity operator, written in terms of the orthonormal eigenstates {} of the operator , between the operator  and generic state .


(b) So far, you should have  .  We can think of  like this:
 , such that the terms in the curly brackets must be equal. So the operator .



(d) Using your answers to the preceding parts (a)-(c), determine the expression for a hermitian operator  with eigenstates with continuous eigenvalues  in terms of the eigenstates and eigenvalues .


Summary of the completeness relation:
· A complete set of orthonormal eigenstates of a hermitian operator  with discrete or continuous eigenvalues can be used to write the completeness relation.
· The completeness relation is useful for decomposing a state vector into its components along each of the basis vectors.
· The completeness relation for basis vectors with a discrete eigenvalue spectrum is , where {} is an orthonormal basis for an N dimensional vector space (e.g., formed with a complete set of eigenstates  with eigenvalues  of an operator  corresponding to an observable ).
· The completeness relation for basis vectors with a continuous eigenvalue spectrum is
 , where  is an orthonormal basis for an infinite dimensional vector space (e.g., formed with a complete set of eigenstates  with eigenvalues  of an operator  corresponding to an observable ).
· The identity operator doesn’t change the vector it acts on.
· An operator  with a complete set of orthonormal eigenstates {} with discrete eigenvalues  can be written as .
· An operator  with a complete set of orthonormal eigenstates  with continuous eigenvalues  can be written as .

 (
Checkpoint 2
Choose 
all of the following statements which are correct 
for a given quantum system 
about
 an operator
 
 that corresponds to a 
physical observable 
 
with
 discrete
 eigenvalues 
 and 
eigenstates
 
:
, where 
 are expansion coefficients.
 
is
 the probability
 of measuring 
 
 in a generic state 
.
 
is
 the probability of measuring 
 
 in a generic state 
.
(I) 
only
(II) only 
(I
) 
and (II) 
only
(I) and (II
I
) only
None of the above.
)


Projection Operator

27. Which one of the following statements is correct about the expression, where  } form an orthonormal basis for an N dimensional vector space?
(a)  is equal to the number 1.
(b)  is a scalar, but one cannot determine what number it is equal to without knowing what  is explicitly.
(c)  is an outer product, so it is an operator.
(d)  is a vector.  

28. Act on a generic state  with the operator . That is, .  Which one of the following statements correctly describes what you obtain?
(a) You get back the same state , because   is the identity operator.
(b) You get the projection of  along the direction of .   is the component of  along the direction of . The vector , which multiplies the coefficient , gives the direction of the projected vector.
(c) You get the same state  back, with the corresponding eigenvalue.
(d) It cannot be determined from the given information. The state  has to be given explicitly in position representation for a given quantum system to be able to calculate the answer.

29. Consider the following conversation between Student A and Student B.
· Student A: I thought that  was equal to the identity operator. Wasn’t that what we had learned earlier in this tutorial?  How is it that the same expression is the identity operator and the projection operator at the same time?
· Student B: The expression that was equal to the identity operator was , where there is a sum over a complete set of basis vectors. Applying that on a state  would give the same state back. An example of a projection operator is . Acting with  on a state  gives the projection of that state along the direction of  as follows:
 (
The vector multiplying
the
 inner product
) (
Inner product of 
 with 
 equals the component of 
 along the direction o
f
 
)


Do you agree with Student B’s explanation? Explain why or why not.

Summary of the projection operator:
· The projection operator   returns the component of a state vector along the direction of a vector .
· Unlike the identity operator, the projection operator acting on a state vector need not return the same state vector back.  
· The projection operator formed with orthonormal eigenstates of a hermitian operator  with discrete or continuous eigenvalues has a similar affect on a generic state  as follows:
·  is a projection operator, e.g., written in terms of orthonormal eigenstates  with discrete eigenvalues   of an operator .  The projection operator   projects a generic state   along the direction of vector .
·  is a projection operator, e.g., written in terms of orthonormal eigenstates  with continuous eigenvalues  of an operator .  The projection operator  projects a generic state  along the direction of vector .

 (
Checkpoint 3
Assume we have a 
generic 
vector 
 
in a three dimensional Hilbert space where 
 
 are complex numbers and 
 form an orthonormal basis.
Write
 the 
projection operator that projects
 
 
along the 
basis 
vector 
.
Use the projection operator 
you constructed 
to find the components of state 
 along 
the 
direction 
. 
Act with the identity operator, written in terms of the basis vectors 
 
on the 
vector 
.
Write down, in your own w
ords, the difference between a
 projection ope
rator and the identity operator based upon your answers to the preceding parts.
)


Answers to Checkpoints

Checkpoint 1:
Student A.  There are an infinite number of values of position in a one dimensional infinite square well.

Checkpoint 2:
(d)

Checkpoint 3:
a.  
b.  
c.  
d.  The identity operator acting on a state gives the same state back.  A projection operator acting on a state gives a component of the state along a basis vector times a basis vector.
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