

For these questions, use the simulation "Comparison of the finite and infinite square wells" in the QuVis HTML5 collection. https://www.st-andrews.ac.uk/physics/quvis/simulations html5/sims/finite-infinite-well/finite-infinite-well.html

1	Use the simulation to com	plete the following	table for the first	excited state ψ_2	for different well de	pths. Make all	your sketches the same scale.

Well	Sketch of the 1 st excited state	Fraction of $ \psi_2 ^2$	Probability of finding the	First excited	V - E (well depth	$\sqrt{V-E}$
depth	probability density $ \psi_2 ^2$	beyond the well edges	particle inside the well	state energy E_2	minus energy)	
V ₀						
2 <i>V</i> ₀						
3V ₀						
4 <i>V</i> ₀						
infinite						

2) Using your data in the table from question 1, construct a graph of the fraction of the probability density $|\psi_2|^2$ beyond the edges of the well versus $\sqrt{V-E}$. Label your axes.

3) Using ideas of de Broglie wavelength, explain qualitatively how the fraction of $|\psi_2|^2$ beyond the edges of the well and the energy E_2 in the question 1 table are related. No quantitative analysis is needed.

4) For the finite well, the form of the **probability density beyond the edges of the well** is an exponential decay similar to the function

$$|\psi(x)|^2 = Ne^{-qx}$$

assuming positive x, where N is a constant and

$$q = \sqrt{\frac{8m}{\hbar^2}(V - E)}$$

with *m* as particle mass, *V* as well depth and *E* as particle energy.

a) For what values of *x* does the wavefunction decay exponentially for the finite-depth well shown in the simulation?

b) Consider the function e^{-qx} for positive *x*.

If q is increased, does the function e^{-qx} remain *unchanged*, become *less steep* (fall off to zero more slowly) or become *steeper* (fall off to zero more quickly)?

c) What does an increase of *q* correspond to in your data from question 1?

d) Using these results, explain qualitatively your graph from question 2 of the fraction of the probability density $|\psi_2|^2$ beyond the edges of the well versus $\sqrt{V-E}$.

e) Using the above expression for q, explain what happens to the fraction of the probability density beyond the edges of the well in the limit of infinite well depth.