Lesson 5: Finding a Relationship Between Current and Voltage

5.1 Design an Experiment

You have a set of resistors, an ammeter, a voltmeter and a battery. Design an experiment to find a relationship between a current through a resistor and a potential difference across it.

- a) Think of how you can use available resistors to vary the current through the resistor of your choice. What circuits will you build? Draw circuit diagrams.
- b) Think of how you will measure the potential difference across that resistor.
- c) Think what data you will collect and how you will record them. What are your dependent and independent variables?
- d) Build the circuits and collect data. What is the uncertainty in each measurement? How should you represent it in the table of data?
- e) Represent the data with the graph. How big is each data point? What does the trend line look like? Does it make sense? Explain your answer.
- f) Write a mathematical relation that represents current through your resistor as a function of potential difference across it.
- g) If you had to describe in words what the relationship between current through a resistor and potential difference across it is, what would you say?

Use the rubrics on the next page to self-assess and improve your work.

Did you know?

The mathematical pattern you found in activity one is the basis of the relationship for **Ohm's Law**. As current is proportional to potential difference, a proportionality constant must be included in the equation. The relationship between current and voltage can be written as follows:

$$I = \frac{1}{R}\Delta V$$

Where the current, *I*, is the dependent variable, and ΔV and *R* are the independent variables. *R* is the resistance, and ΔV is the potential difference.

Resistance is a physical quantity and is measured in ohms (the symbol is Ω).

Ability	Absent	An attempt	Needs some	Acceptable
			improvement	
Is able	The question to	The question is	The question is	The question is
formulate the	be investigated.	posed but it is not	posed but it	posed and it
question to be	Is not	clear.	involves more than	involves only one
investigated	mentioned.		one variable.	variable.
Is able to	The experiment	The experiment is	The experiment	The experiment
design an	does not answer	related to the	investigates the	investigates the
experiment to	the question.	question but will	question but might	question and
answer the		not help answer it.	not produce the	might produce the
question			data to find a	data to find a
			pattern.	pattern.
Is able to	It is not clear	It is clear what will	It is clear what will	It is clear what
decide what is	what will be	be measured but	be measured and	will be measured
to be	measured.	independent and	independent and	and
measured and		dependent	dependent	independent and
identify		variables are not	variables are	dependent
independent		identified.	identified but the	variables are
and dependent			choice is not	identified and the
variables			explained.	choice is
		4 11 1	4 11 1	explained.
Is able to use	At least one of	All chosen	All chosen	All chosen
available	the chosen	measurements can	measurements can	measurements can
equipment to	measurements	be made, but no	be made, but the	be made and all
make	cannot be made	details are given	details of how it is	details of how it
measurements	with the	about how it is	done are vague or	is done are clearly
	available	done.	incomplete.	provided.
To able 4.	equipment.			C1
is able to	I nere is no	A description is	A description	Clearly describes
describe what	description of	mentioned but it is	exists, but it is	what happens in
is observed in	what was	nicomplete. No	mixed up with	the experiments
worus, nictures and	observed.	picture is present.	explanations of	both verbally and
diagnama			the experiments of	by means of a
diagrams.			labeled picture is	labeled picture.
			nresent	
Is able to	No attempt is	An attempt is	The relationship	The relationshin
construct a	made to	made but the	represents the	represents the
mathematical	construct a	relationship does	trend but no	trend accurately
(if annlicable)	relationship that	not represent the	analysis of how	and completely
relationshin	represents a	trend.	well it agrees with	and an analysis of
that	trend in the data		the data is included	how well it agrees
represents a	a cha in the dutt.		(if applicable) or	with the data is
trend in data			some features of	included (if
			the relationship are	applicable).
			missing.	

5.2 Predict and Test

On activity 5.1 we found that the relationship between current through a commercial resistor and potential difference across it is linear. Design an experiment to test whether the linear relationship for current and voltage holds for different resistive elements in a circuit. Use commercial resistors, light bulbs, and so forth.

Describe an experiment in words and specify what type of resistive device you will study.	Draw an electric circuit and measure the value of the resistance of the resistor using an ohmmeter (an electric device that measures the electric resistance of an object).	Write your prediction using the relationship $I = (1/R)\Delta V$ where <i>R</i> has a constant value.	Perform the experiment, record the outcome, and decide whether the relationship holds for this particular type of resistor.

Based on your findings, what can you say about the hypothesis under test?

5.3 Explain

Examine the results of the activity 4.9. How can you explain them now?

4.9 Observe and explain

Build a series circuit consisting of a battery, a switch, a lightbulb, an ammeter and connecting wires. Have a voltmeter ready. After you build the circuit, close the switch and observe the bulb glow and record the reading of the ammeter.

- a) Does it matter where the ammeter is in the circuit for its reading: before or after the bulb?
- b) Use the voltmeter to measure the potential difference across the battery, the bulb, the connecting wires and a switch. Record the readings. Explain using the energy ideas.
- c) Now open the switch the repeat the voltmeter measurements. Explain.