Maryland Physics Expectations Survey (MPEX)

Developed by E. F. Redish, J. M. Saul, & R. N. Steinberg

Purpose To probe some aspects of student expectations in physics courses and measure the distribution of student views at the beginning and end of the course.
Format Pre/post, Multiple-choice, Agree/disagree
Duration 20-30 min
Focus Beliefs / Attitudes (epistemological beliefs)
Level Upper-level, Intermediate, Intro college, High school

Sample questions from the MPEX:

A significant problem in this course is being able to memorize all the information I need to know.
   Strongly Disagree   1  2   3   4   5   Strongly Agree

Knowledge in physics consists of many pieces of information each of which applies primarily to a specific situation.
    Strongly Disagree   1  2   3   4   5   Strongly Agree

Download

MPEX Implementation Guide

Everything you need to know about implementing the MPEX in your class.

E. Redish, J. Saul, and R. Steinberg, Student expectations in introductory physics, Am. J. Phys. 66 (3), 212 (1998).
RESEARCH VALIDATION
Gold Star Validation
This is the highest level of research validation, corresponding to all seven of the validation categories below.

Research Validation Summary

Based on Research Into:

  • Student thinking

Studied Using:

  • Student interviews
  • Expert review
  • Appropriate statistical analysis

Research Conducted:

  • At multiple institutions
  • By multiple research groups
  • Peer-reviewed publication

The questions on the MPEX were chosen through literature review, discussion with faculty and the researchers’ personal experiences. Over 100 hours of student interviews were conducted to validate that students read and interpreted the questions in the way intended. MPEX data was collected from calibration groups with varying expertise in physics to confirm that MPEX scores increased with increasing experience in physics. Appropriate statistical analyses were conducted and the MPEX was found to be reliable and have good internal consistency. The MPEX has been administered at over 10 institutions with over 1500 students at varying course levels and teaching methods.

References

We don't have any translations of this assessment yet.

If you know of a translation that we don't have yet, or if you would like to translate this assessment, please contact us!

Download the MPEX answer key.

Download the MPEX scoring tool.


Typical Results

Typical results from Madsen et. al 2015:

In typical physics classes, students’ beliefs usually deteriorate or at best stay the same. There are a few types of interventions, including an explicit focus on model-building and/or developing expert-like beliefs that appear to lead to significant improvements in beliefs. Further, small courses and those for elementary education and non-science majors also result in improved beliefs. However, because the available data oversamples certain types of classes, it is unclear what leads to these improvements. The figure below depicts CLASS and MPEX pre- and post-test scores and shifts for a variety of teaching methods. The CLASS and MPEX are similar in the way they measure students beliefs about physics and learning physics, so the scores for these tests have been combined. Further, there is less published data for the MPEX (n=1316) than the CLASS (n=9296), and there are teaching method categories with only one published MPEX study or none at all, so combining the data from the CLASS and MPEX allows us to draw more conclusions.  


Coming soon: The PhysPort Assessment Data Explorer

Start learning more from your tests.

  • Get 1-click statistics
  • Compare to students like yours
  • Get practical, personalized recommendations

Learn more!

The latest version of the MPEX, released in 1997, is version 4.0.

Related Workshop

Evaluation and Assessment

NEW - PhysPort Data Explorer

Screenshot of the Data Explorer
Explore assessment data