Developed by: Priscilla Laws with contributions from Robert Boyle, Patrick Cooney, Kenneth Laws, John Luetzelschwab, David Sokoloff and Ronald Thornton

**Level**

middle schoolhigh schoolintro collegeinter-mediateupper levelgrad school other

calc based

alg based

**Topics**

**Setting**

### Overview

**What?** A calculus-based intro physics curriculum designed to completely replace traditional lectures and labs with sequenced activities. Students work in groups to make and discuss predictions and observations, and to perform data acquisition, visualization, analysis, and mathematical modeling.

### Curriculum outline

MODULE 1: The Core Volume: Mechanics I: Kinematics and Newtonian Dynamics (Units 1-7)

Unit 1. Introduction and Computing.

Unit 2. Measurement and Uncertainty.

Unit 3. One Dimensional Motion I—A Graphical Description.

Unit 4. One-Dimensional Motion II—A Mathematical Description of Constant Acceleration.

Unit 5. One-Dimensional Forces, Mass, and Motion.

Unit 6. Gravity and Projectile Motion.

Unit 7. Applications of Newton's Laws.

MODULE 2: Mechanics II: Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

Unit 8. One-Dimensional Collisions.

Unit 9. Two-Dimensional Collisions.

Unit 10. Work and Energy.

Unit 11. Energy Conservation.

Unit 12. Rotational Motion.

Unit 13. Rotational Momentum and Torque as Vectors.

Unit 14. Harmonic Motion.

Unit 15. Oscillations, Determinism, and Chaos.

MODULE 3: Heat Temperature and Nuclear Radiation: Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 and 28)

Unit 16. Temperature and Heat Transfer.

Unit 17. The First Law of Thermodynamics.

Unit 18. Heat Engines.

Unit 28. Radioactivity and Radon.

MODULE 4: Electricity and Magnetism (Units 19-27)

Unit 19. Electric Fields.

Unit 20. Electric Flux and Gauss' Law.

Unit 21. Electrical and Gravitational Potential.

Unit 22. Batteries, Bulbs, and Current Flow.

Unit 23. Direct Current Circuits.

Unit 24. Capacitors and RC Circuits.

Unit 25. Electronics.

Unit 26. Magnetic Fields.

Unit 27. Electricity and Magnetism.

### Student skills developed

**Designed for:**

- Conceptual understanding
- Lab skills
- Using multiple representations
- Designing experiments

**Can be adapted for:**

- Problem-solving skills
- Metacognition

### Instructor effort required

- Medium

### Resources required

- TAs / LAs
- Projector
- Computers for students
- Advanced lab equipment
- Cost for students
- Tables for group work

### Resources

**Developer's website:**Workshop Physics

**Intro Article:**P. Laws, M. Willis, and D. Sokoloff, Workshop Physics and Related Curricula: A 25-Year History of Collaborative Learning Enhanced by Computer Tools for Observation and Analysis, Phys. Teach.

**53**(7), 401 (2015).

### Teaching Materials

Workshop Physics is available in a series of books published by Wiley:

- Module 1: The Core Volume: Mechanics I: Kinematics and Newtonian Dynamics (Units 1-7)
- Module 2: Mechanics II: Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)
- Module 3: Heat Temperature and Nuclear Radiation: Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 and 28)
- Module 4: Electricity and Magnetism (Units 19-27)

### Research

**RESEARCH VALIDATION**

**Bronze Validation**

This is the third highest level of research validation, corresponding to:

- at least 1 of the "based on" categories
- at least 1 of the "demonstrated to improve" categories
- at least 1 of the "studied using" categories

### Research Validation Summary

#### Based on Research Into:

- theories of how students learn
- student ideas about specific topics

#### Demonstrated to Improve:

- conceptual understanding
- problem-solving skills
- lab skills
- beliefs and attitudes
- attendance
- retention of students
- success of underrepresented groups
- performance in subsequent classes

#### Studied using:

- cycle of research and redevelopment
- student interviews
- classroom observations
- analysis of written work
- research at multiple institutions
- research by multiple groups
- peer-reviewed publication

### References

- P. Laws, M. Willis, and D. Sokoloff, Workshop Physics and Related Curricula: A 25-Year History of Collaborative Learning Enhanced by Computer Tools for Observation and Analysis, Phys. Teach.
**53**(7), 401 (2015). - J. Saul and E. Redish, Evaluation of the Workshop Physics Dissemination Project, 1998.
- R. Thornton, Conceptual Dynamics: Following Changing Student Views of Force and Motion, presented at the International Conference on Undergraduate Physics, College Park, MD, 1996.
- R. Thornton and D. Sokoloff, Assessing student learning of Newton's laws: The Force and Motion Conceptual Evaluation and the Evaluation of Active Learning Laboratory and Lecture Curricula, Am. J. Phys.
**66**(4), 338 (1998).